@article{SammoudBouguezziUthoffetal.2023, author = {Sammoud, Senda and Bouguezzi, Raja and Uthoff, Aaron and Ramirez-Campillo, Rodrigo and Moran, Jason and Negra, Yassine and Hachana, Younes and Chaabene, Helmi}, title = {The effects of backward vs. forward running training on measures of physical fitness in young female handball players}, series = {Frontiers in sports and active living}, volume = {5}, journal = {Frontiers in sports and active living}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2023.1244369}, pages = {10}, year = {2023}, abstract = {Introduction This study examined the effects of an 8-week backward running (BR) vs. forward running (FR) training programmes on measures of physical fitness in young female handball players. Methods Twenty-nine players participated in this study. Participants were randomly assigned to a FR training group, BR training group, and a control group. Results and discussion Within-group analysis indicated significant, small-to-large improvements in all performance tests (effect size [g] = 0.36 to 1.80), except 5-m forward sprint-time in the BR group and 5- and 10-m forward sprint-time in the FR group. However, the CG significantly decreased forward sprint performance over 10-m and 20-m (g = 0.28 to 0.50) with no changes in the other fitness parameters. No significant differences in the amount of change scores between the BR and FR groups were noted. Both training interventions have led to similar improvements in measures of muscle power, change of direction (CoD) speed, sprint speed either forward or backward, and repeated sprint ability (RSA) in young female handball players, though BR training may have a small advantage over FR training for 10-m forward sprint time and CoD speed, while FR training may provide small improvements over BR training for RSAbest. Practitioners are advised to consider either FR or BR training to improve various measures of physical fitness in young female handball players.}, language = {en} } @article{PalmaMunozRamirezCampilloAzocarGallardoetal.2021, author = {Palma-Mu{\~n}oz, Ignacio and Ram{\´i}rez-Campillo, Rodrigo and Azocar-Gallardo, Jairo and {\´A}lvarez, Cristian and Asadi, Abbas and Moran, Jason and Chaabene, Helmi}, title = {Effects of progressed and nonprogressed volume-based overload plyometric training on components of physical fitness and body composition variables in youth male basketball players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {35}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {6}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002950}, pages = {1642 -- 1649}, year = {2021}, abstract = {This study examined the effect of 6 weeks of progressed and nonprogressed volume-based overload plyometric training (PT) on components of physical fitness and body composition measures in young male basketball players, compared with an active control group. Subjects were randomly assigned to a progressed PT (PPT, n = 7; age = 14.6 +/- 1.1 years), a non-PPT (NPPT, n = 8, age = 13.8 +/- 2.0 years), or a control group (CG, n = 7, age = 14.0 +/- 2.0 years). Before and after training, body composition measures (muscle mass and fat mass), countermovement jump with arms (CMJA) and countermovement jump without arms (CMJ), horizontal bilateral (HCMJ) and unilateral jump with right leg (RJ) and left leg (LJ), 20-cm drop jump (DJ20), sprint speed (10 m sprint), and change of direction speed (CODS [i.e., T-test]) were tested. Significant effects of time were observed for muscle and fat mass, all jump measures, and CODS (all p < 0.01; d = 0.37-0.83). Significant training group x time interactions were observed for all jump measures (all p < 0.05; d = 0.24-0.41). Post hoc analyses revealed significant pre-post performance improvements for the PPT (RJ and LJ: increment 18.6\%, d = 0.8 and increment 22.7\%, d = 0.9, respectively; HCMJ: increment 16.4\%, d = 0.8; CMJ: increment 22.4\%, d = 0.7; CMJA: increment 23.3\%, d = 0.7; and DJ20: increment 39.7\%, d = 1.1) and for the NPPT group (LJ: increment 14.1\%, d = 0.4; DJ20: increment 32.9\%, d = 0.8) with greater changes after PPT compared with NPPT for all jump measures (all p < 0.05; d = 0.21-0.81). The training efficiency was greater (p < 0.05; d = 0.22) after PPT (0.015\% per jump) compared with NPPT (0.0053\% per-jump). The PPT induced larger performance improvements on measures of physical fitness as compared to NPPT. Therefore, in-season progressive volume-based overload PT in young male basketball players is recommended.}, language = {en} } @article{RamirezCampilloAndradeNikolaidisetal.2020, author = {Ramirez-Campillo, Rodrigo and Andrade, David C. and Nikolaidis, Pantelis T. and Moran, Jason and Clemente, Filipe Manuel and Chaabene, Helmi and Comfort, Paul}, title = {Effects of plyometric jump training on vertical jump height of volleyball players: a systematic review with meta-analysis of randomized-controlled trial}, series = {Journal of Sports Science and Medicine}, volume = {19}, journal = {Journal of Sports Science and Medicine}, publisher = {Wiley-Blackwell}, address = {Oxford}, pages = {11}, year = {2020}, abstract = {This meta-analysis aimed to assess the effects of plyometric jump training (PJT) on volleyball players' vertical jump height (VJH), comparing changes with those observed in a matched control group. A literature search in the databases of PubMed, MEDLINE, Web of Science, and SCOPUS was conducted. Only randomized-controlled trials and studies that included a pre-to-post intervention assessment of VJH were included. They involved only healthy volleyball players with no restrictions on age or sex. Data were independently extracted from the included studies by two authors. The Physiotherapy Evidence Database scale was used to assess the risk of bias, and methodological quality, of eligible studies included in the review. From 7,081 records, 14 studies were meta-analysed. A moderate Cohen's d effect size (ES = 0.82, p <0.001) was observed for VJH, with moderate heterogeneity (I2 = 34.4\%, p = 0.09) and no publication bias (Egger's test, p = 0.59). Analyses of moderator variables revealed no significant differences for PJT program duration (≤8 vs. >8 weeks, ES = 0.79 vs. 0.87, respectively), frequency (≤2 vs. >2 sessions/week, ES = 0.83 vs. 0.78, respectively), total number of sessions (≤16 vs. >16 sessions, ES = 0.73 vs. 0.92, respectively), sex (female vs. male, ES = 1.3 vs. 0.5, respectively), age (≥19 vs. <19 years of age, ES = 0.89 vs. 0.70, respectively), and volume (>2,000 vs. <2,000 jumps, ES = 0.76 vs. 0.79, respectively). In conclusion, PJT appears to be effective in inducing improvements in volleyball players' VJH. Improvements in VJH may be achieved by both male and female volleyball players, in different age groups, with programs of relatively low volume and frequency. Though PJT seems to be safe for volleyball players, it is recommended that an individualized approach, according to player position, is adopted with some players (e.g. libero) less prepared to sustain PJT loads.}, language = {en} }