@article{RaetzelWilkensMenzel2017, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Effect of polarization entanglement in photon-photon scattering}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {95}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.95.012101}, pages = {6}, year = {2017}, abstract = {It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.}, language = {en} } @article{MenzelHeuerMilonni2019, author = {Menzel, Ralf and Heuer, Axel and Milonni, Peter W.}, title = {Entanglement, Complementarity, and Vacuum Fields in Spontaneous Parametric Down-Conversion}, series = {Atoms}, volume = {7}, journal = {Atoms}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2218-2004}, doi = {10.3390/atoms7010027}, pages = {14}, year = {2019}, abstract = {Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong-Ou-Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields.}, language = {en} } @article{MenzelMarxPuhlmannetal.2019, author = {Menzel, Ralf and Marx, Robert and Puhlmann, Dirk and Heuer, Axel and Schleich, Wolfgang}, title = {The photon}, series = {Journal of the Optical Society of America : B, Optical physics}, volume = {36}, journal = {Journal of the Optical Society of America : B, Optical physics}, number = {6}, publisher = {Optical Society of America}, address = {Washington}, issn = {0740-3224}, doi = {10.1364/JOSAB.36.001668}, pages = {1668 -- 1675}, year = {2019}, abstract = {We investigate the role of the spatial mode function in a single-photon experiment designed to demonstrate the principle of complementarity. Our approach employs entangled photons created by spontaneous parametric downconversion from a pump mode in a TEM01 mode together with a double slit. Measuring the interference of the signal photons behind the double slit in coincidence with the entangled idler photons at different positions, we select signal photons of different mode functions. When the signal photons belong to the TEM01-like double-hump mode, we obtain almost perfect visibility of the interference fringes, and no "which slit" information is available in the idler photon detected before the slits. This result is remarkable because the entangled signal and idler photon pairs are created each time in only one of the two intensity humps. However, when we break the symmetry between the two maxima of the signal photon mode structure, the paths through the slits for these additional photons become distinguishable and the visibility vanishes. It is the mode function of the photons selected by the detection system that decides if interference or "which slit" information is accessible in the experiment.}, language = {en} } @misc{MenzelHeuerMilonni2019, author = {Menzel, Ralf and Heuer, Axel and Milonni, Peter W.}, title = {Entanglement, complementarity, and vacuum fields in spontaneous parametric down-conversion}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1077}, issn = {1866-8372}, doi = {10.25932/publishup-47354}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473542}, pages = {16}, year = {2019}, abstract = {Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong-Ou-Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields.}, language = {en} } @article{RaetzelWilkensMenzel2017, author = {Raetzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light: The emission of counter-propagating laser pulses from an atom}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {95}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.95.084008}, pages = {11}, year = {2017}, language = {en} } @article{SandmannGarzMenzel2016, author = {Sandmann, Michael and Garz, Andreas and Menzel, Ralf}, title = {Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms}, series = {Botany}, volume = {94}, journal = {Botany}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1916-2790}, doi = {10.1139/cjb-2015-0144}, pages = {53 -- 64}, year = {2016}, abstract = {Cells of a cell-wall deficient line (cw15-type) of Chlamydomonas reinhardtii and of the corresponding wild type were grown during repetitive light-dark cycles. In a direct comparison, both lines showed approximately the same relative biomass increase during light phase but the cw-line produced significantly more, and smaller, daughter cells. Throughout the light period the average cellular starch content, the cellular chlorophyll content, the cellular rate of dark respiration, and the cellular rate of photosynthesis of the cw-line was lower. Despite this, several non-cell volume related parameters like the development of starch content per cell volume were clearly different over time between the strains. Additionally, the chlorophyll-based photosynthesis rates were 2-fold higher in the mutant than in the wild-type cells, and the ratio of chlorophyll a to chlorophyll b as well as the light-saturation index were also consistently higher in the mutant cells. Differences in the starch content were also confirmed by single cell analyses using a sensitive SHG-based microscopy approach. In summary, the cw15-type mutant deviates from its genetic background in the entire cell physiology. Both lines should be used in further studies in comparative systems biology with focus on the detailed relation between cell volume increase, photosynthesis, starch metabolism, and daughter cell productivity.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light-the gravitational field of a laser pulse}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/2/023009}, pages = {16}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{PuhlmannHenkelHeueretal.2016, author = {Puhlmann, Dirk and Henkel, Carsten and Heuer, Axel and Pieplow, Gregor and Menzel, Ralf}, title = {Characterization of a remote optical element with bi-photons}, series = {Physica scripta : an international journal for experimental and theoretical physics}, volume = {91}, journal = {Physica scripta : an international journal for experimental and theoretical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0031-8949}, doi = {10.1088/0031-8949/91/2/023006}, pages = {113 -- 114}, year = {2016}, abstract = {We present a simple setup that exploits the interference of entangled photon pairs. 'Signal' photons are sent through a Mach-Zehnder-like interferometer, while 'idlers' are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {The effect of entanglement in gravitational photon-photon scattering}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {115}, journal = {epl : a letters journal exploring the frontiers of physics}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/115/51002}, pages = {S12 -- S13}, year = {2016}, abstract = {The differential cross-section for gravitational photon-photon scattering calculated in perturbative quantum gravity is shown to depend on the degree of polarization entanglement of the two photons. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons. The results are interpreted in terms of quantum interference, and it is shown how they fit into the idea of distance-dependent forces. Copyright (C) EPLA, 2016}, language = {en} } @misc{MenzelPuhlmannHeuer2017, author = {Menzel, Ralf and Puhlmann, Dirk and Heuer, Axel}, title = {Complementarity in single photon interference - the role of the mode function and vacuum fields}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395210}, pages = {7}, year = {2017}, abstract = {Background In earlier experiments the role of the vacuum fields could be demonstrated as the source of complementarity with respect to the temporal properties (Heuer et al., Phys. Rev. Lett. 114:053601, 2015). Methods Single photon first order interferences of spatially separated regions from the cone structure of spontaneous parametric down conversion allow for analyzing the role of the mode function in quantum optics regarding the complementarity principle. Results Here the spatial coherence properties of these vacuum fields are demonstrated as the physical reason for complementarity in these single photon quantum optical experiments. These results are directly connected to the mode picture in classical optics. Conclusion The properties of the involved vacuum fields selected via the measurement process are the physical background of the complementarity principle in quantum optics.}, language = {en} }