@article{MelnickGarcinQuinterosetal.2012, author = {Melnick, Daniel and Garcin, Yannick and Quinteros, Javier and Strecker, Manfred and Olago, Daniel and Tiercelin, Jean-Jacques}, title = {Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins}, series = {Earth \& planetary science letters}, volume = {331}, journal = {Earth \& planetary science letters}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.03.007}, pages = {335 -- 346}, year = {2012}, abstract = {A comparison of deformation rates in active rifts over different temporal scales may help to decipher variations in their structural evolution, controlling mechanisms, and evolution of sedimentary environments through time. Here we use deformed lake shorelines in the Suguta and Turkana basins in northern Kenya as strain markers to estimate deformation rates at the 10(3)-10(4) yr time scale and compare them with rates spanning 10(1)-10(7) yr. Both basins are internally drained today, but until 7 to 5 kyr lake levels were 300 and 100 m higher, respectively, maintained by the elevation of overflow sills connecting them with the Nile drainage. Protracted high lake levels resulted in formation of a maximum highstand shoreline - a distinct geomorphic feature virtually continuous for several tens of kilometers. We surveyed the elevation of this geomorphic marker at 45 sites along >100 km of the rift, and use the overflow sills as vertical datum. Thin-shell elastic and thermomechanical models for this region predict up to similar to 10 m of rapid isostatic rebound associated with lake-level falls lasting until similar to 2 kyr ago. Holocene cumulative throw rates along four rift-normal profiles are 6.8-8.5 mm/yr, or 7.5-9.6 mm/yr if isostatic rebound is considered. Assuming fault dips of 55-65, inferred from seismic reflection profiles, we obtained extension rates of 3.2-6 mm/yr (including uncertainties in field measurements, fault dips, and ages), or 3.5-6.7 mm/yr considering rebound. Our estimates are consistent, within uncertainties, with extension rates of 4-5.1 mm/yr predicted by a modern plate-kinematic model and plate reconstructions since 3.2 Myr. The Holocene strain rate of 10(-15) s(-1) is similar to estimates on the similar to 10(6) yr scale, but over an order of magnitude higher than on the similar to 10(7) yr scale. This is coherent with continuous localization and narrowing of the plate boundary, implying that the lithospheric blocks limiting the Kenya Rift are relatively rigid. Increasing strain rate under steady extension rate suggests that, as the magnitude of extension and crustal thinning increases, the role of regional processes such as weakening by volcanism becomes dominant over far-field plate tectonics controlling the breakup process and the transition from continental rifting to oceanic spreading.}, language = {en} } @article{MarwanTrauthSchwarzetal.1999, author = {Marwan, Norbert and Trauth, Martin H. and Schwarz, Udo and Kurths, J{\"u}rgen and Strecker, Manfred}, title = {Climate dynamics of varved pleistocene lake sediments in nw Argentina}, issn = {1029-7006}, year = {1999}, language = {en} } @article{MarwanSchwarzKurthsetal.2000, author = {Marwan, Norbert and Schwarz, Udo and Kurths, J{\"u}rgen and Strecker, Manfred}, title = {ENSO Impact on landslide generation in northwestern Argentina}, issn = {1029-7006}, year = {2000}, abstract = {Climatic changes are of major importance in landslide generation in the Argentine Andes. Increased humidity as a potential influential factor was inferred from the temporal clustering of landslide deposits during a period of significantly wetter climate, 30,000 years ago. A change in seasonality was tested by comparing past (inferred from annual-layered lake deposits, 30,000 years old) and modern (present-day observations) precipitation changes. Quantitative analysis of cross recurrence plots were developed to compare the influence of the El Nino/Southern Oscillation (ENSO) on present and past rainfall variations. This analysis has shown the stronger influence of NE trades in the location of landslide deposits in the intra-andean basin and valleys, what caused a higher contrast between summer and winter rainfall and an increasing of precipitation in La Nina years. This is believed to reduce thresholds for landslide generation in the arid to semiarid intra-andean basins and valleys.}, language = {en} } @article{TrauthBookhagenMarwanetal.2003, author = {Trauth, Martin H. and Bookhagen, Bodo and Marwan, Norbert and Strecker, Manfred}, title = {Multiple landslide clusters record quaternary climate changes in the northwestern Argentine andes}, year = {2003}, abstract = {The chronology of multiple landslide deposits and related lake sediments in the semi-arid eastern Argentine Cordillera suggests that major mass movements cluster in two time periods during the Quaternary, i.e. between 40 and 25 and after 5 14C kyr BP. These clusters may correspond to the Minchin (maximum at around 28-27 14C kyr BP) and Titicaca wet periods (after 3.9 14C kyr BP). The more humid conditions apparently caused enhanced landsliding in this environment. In contrast, no landslide-related damming and associated lake sediments occurred during the Coipasa (11.5- 10 14C yr BP) and Tauca wet periods (14.5-11 14C yr BP). The two clusters at 40-25 and after 5 14C kyr BP may correspond to periods where the El Ni{\~n}o-Southern Oscillation (ENSO) and Tropical Atlantic Sea Surface Temperature Variability (TAV) were active. This, however, was not the case during the Coipasa and Tauca wet periods. Lake-balance modelling of a landslide-dammed lake suggests a 10-15\% increase in precipitation and a 3-4 ° C decrease in temperature at ~30 14C kyr BP as compared to the present. In addition, time-series analysis reveals a strong ENSO and TAV during that time. The landslide clusters in northwestern Argentina are therefore best explained by periods of more humid and more variable climates.}, language = {en} }