@article{PoudelTichyBruegmannetal.2020, author = {Poudel, Amit and Tichy, Wolfgang and Br{\"u}gmann, Bernd and Dietrich, Tim}, title = {Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {102}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.102.104014}, pages = {16}, year = {2020}, abstract = {Numerical-relativity simulations are essential for studying the last stages of the binary neutron star coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density atmosphere. Here we discuss a new framework in which we can effectively set the density surrounding the neutron stars to zero to ensure a more accurate simulation. We test our method with a number of single star test cases and for an equal-mass binary neutron star simulation. While the bulk motion of the system is not influenced, and hence there is no improvement with respect to the emitted gravitational-wave signal, we find that the new approach is superior with respect to mass conservation and it allows a much better tracking of outward moving material. This will allow a more accurate simulation of the ejected material and supports the interpretation of present and future multimessenger observations with more accurate numerical-relativity simulations.}, language = {en} }