@book{Franzke2005, author = {Franzke, Jochen}, title = {Slovak Telecom administration : transformation and regulation in a dynamic market}, isbn = {978-3-939469-00-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6530}, publisher = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This study is analysing the transformation of Slovak administration in the telecommunication sector between 1989 and 2004. The dynamic telecom sector forms a good example for the transition problems of post-socialist administration with special regard to the regulation regime change. After describing briefly the role of the telecom sector within economy, the Slovak sectoral policy is analysed. The focus is layed on telecom legislation (including the regulation framework), liberalization of the telecom market and privatisation of the former state owned telecom operator. The transformation of the organizational structure of the "Slovak telecommunication administration" is analysed in particular at the level of the ministry and the regulating agency.}, subject = {Verwaltung}, language = {en} } @phdthesis{Kolbe2005, author = {Kolbe, Anna}, title = {Redox-regulation of starch and lipid synthesis in leaves}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6388}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Post-translational redox-regulation is a well-known mechanism to regulate enzymes of the Calvin cycle, oxidative pentose phosphate cycle, NADPH export and ATP synthesis in response to light. The aim of the present thesis was to investigate whether a similar mechanism is also regulating carbon storage in leaves. Previous studies have shown that the key-regulatory enzyme of starch synthesis, ADPglucose pyrophosphorylase (AGPase) is inactivated by formation of an intermolecular disulfide bridge between the two catalytic subunits (AGPB) of the heterotetrameric holoenzyme in potato tubers, but the relevance of this mechanism to regulate starch synthesis in leaves was not investigated. The work presented in this thesis shows that AGPase is subject to post-translational redox-regulation in leaves of pea, potato and Arabidopsis in response to day night changes. Light was shown to trigger posttranslational redox-regulation of AGPase. AGPB was rapidly converted from a dimer to a monomer when isolated pea chloroplasts were illuminated and from a monomer to a dimer when preilluminated leaves were darkened. Conversion of AGPB from dimer to monomer was accompanied by an increase in activity due to changes in the kinetik properties of the enzyme. Studies with pea chloroplast extracts showed that AGPase redox-activation is mediated by thioredoxins f and m from spinach in-vitro. In a further set of experiments it was shown that sugars provide a second input leading to AGPase redox activation and increased starch synthesis and that they can act as a signal which is independent from light. External feeding of sugars such as sucrose or trehalose to Arabidopsis leaves in the dark led to conversion of AGPB from dimer to monomer and to an increase in the rate of starch synthesis, while there were no significant changes in the level of 3PGA, an allosteric activator of the enyzme, and in the NADPH/NADP+ ratio. Experiments with transgenic Arabidopsis plants with altered levels of trehalose 6-phosphate (T6P), the precursor of trehalose synthesis, provided genetic evidence that T6P rather than trehalose is leading to AGPase redox-activation. Compared to Wt, leaves expressing E.coli trehalose-phosphate synthase (TPS) in the cytosol showed increased activation of AGPase and higher starch level during the day, while trehalose-phosphate phosphatase (TPP) overexpressing leaves showed the opposite. These changes occurred independently of changes in sugar and sugar-phosphate levels and NADPH/NADP+ ratio. External supply of sucrose to Wt and TPS-overexpressing leaves led to monomerisation of AGPB, while this response was attenuated in TPP expressing leaves, indicating that T6P is involved in the sucrose-dependent redox-activation of AGPase. To provide biochemical evidence that T6P promotes redox-activation of AGPase independently of cytosolic elements, T6P was fed to intact isolated chloroplasts for 15 min. incubation with concentrations down to 100 µM of T6P, but not with sucrose 6-phosphate, sucrose, trehalose or Pi as controls, significantly and specifically increased AGPB monomerisation and AGPase activity within 15 minutes, implying T6P as a signal reporting the cytosolic sugar status to the chloroplast. The response to T6P did not involve changes in the NADPH/NADP+ ratio consistent with T6P modulating redox-transfer to AGPase independently of changes in plastidial redox-state. Acetyl-CoA carboxylase (ACCase) is known as key-regulatory enzyme of fatty acid and lipid synthesis in plants. At the start of the present thesis there was mainly in vitro evidence in the literature showing redox-regulation of ACCase by DTT, and thioredoxins f and m. In the present thesis the in-vivo relevance of this mechanism to regulate lipid synthesis in leaves was investigated. ACCase activity measurement in leaf tissue collected at the end of the day and night in Arabidopsis leaves revealed a 3-fold higher activation state of the enzyme in the light than in the dark. Redox-activation was accompanied by change in kinetic properties of ACCase, leading to an increase affinity to its substrate acetyl-CoA . In further experiments, DTT as well as sucrose were fed to leaves, and both treatments led to a stimulation in the rate of lipid synthesis accompanied by redox-activation of ACCase and decrease in acetyl-CoA content. In a final approach, comparison of metabolic and transcript profiling after DTT feeding and after sucrose feeding to leaves provided evidence that redox-modification is an important regulatory mechanism in central metabolic pathways such as TCA cycle and amino acid synthesis, which acts independently of transcript levels.}, subject = {Redoxreaktion}, language = {en} } @misc{SiepmannSalzbergLudwig2004, author = {Siepmann, Gerda and Salzberg-Ludwig, Karin}, title = {Research project to the subject}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6502}, year = {2004}, language = {en} } @phdthesis{Floeter2005, author = {Fl{\"o}ter, Andr{\´e}}, title = {Analyzing biological expression data based on decision tree induction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6416}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Modern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples. Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information. At present, various methods are used for this purpose. One superordinate class of these meth­ods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models. Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees. The concept of comparing sets of decision trees is developed. This method offers the pos­sibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the un­derstanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction. A second approach exploits the structure of sets of decision trees for the discovery of com­binatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees ­ a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations. Both the introduced methods are available as software tools. They can be applied consecu­tively or separately. That way they make up a package of analytical tools that usefully supplement existing methods. By means of these tools, the newly introduced methods were able to confirm existing knowl­edge and to suggest interesting and new relationships between metabolites.}, subject = {Molekulare Bioinformatik}, language = {en} } @phdthesis{Garnier2005, author = {Garnier, S{\´e}bastien}, title = {Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6395}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The Reversible Addition Fragmentation Chain Transfer (RAFT) process using the new RAFT agent benzyldithiophenyl acetate is shown to be a powerful polymerization tool to synthesize novel well-defined amphiphilic diblock copolymers composed of the constant hydrophobic block poly(butyl acrylate) and of 6 different hydrophilic blocks with various polarities, namely a series of non-ionic, non-ionic comb-like, anionic and cationic hydrophilic blocks. The controlled character of the polymerizations was supported by the linear increase of the molar masses with conversion, monomodal molar mass distributions with low polydispersities and high degrees of end-group functionalization. The new macro-surfactants form micelles in water, whose size and geometry strongly depend on their composition, according to dynamic and static light scattering measurements. The micellization is shown to be thermodynamically favored, due to the high incompatibility of the blocks as indicated by thermal analysis of the block copolymers in bulk. The thermodynamic state in solution is found to be in the strong or super strong segregation limit. Nevertheless, due to the low glass transition temperature of the core-forming block, unimer exchange occurs between the micelles. Despite the dynamic character of the polymeric micellar systems, the aggregation behavior is strongly dependent on the history of the sample, i.e., on the preparation conditions. The aqueous micelles exhibit high stability upon temperature cycles, except for an irreversibly precipitating block copolymer containing a hydrophilic block exhibiting a lower critical solution temperature (LCST). Their exceptional stability upon dilution indicates very low critical micelle concentrations (CMC) (below 4∙10-4 g∙L-1). All non-ionic copolymers with sufficiently long solvophobic blocks aggregated into direct micelles in DMSO, too. Additionally, a new low-toxic highly hydrophilic sulfoxide block enables the formation of inverse micelles in organic solvents. The high potential of the new polymeric surfactants for many applications is demonstrated, in comparison to reference surfactants. The diblock copolymers are weakly surface-active, as indicated by the graduate decrease of the surface tension of their aqueous solutions with increasing concentration. No CMC could be detected. Their surface properties at the air/water interface confer anti-foaming properties. The macro-surfactants synthesized are surface-active at the interface between two liquid phases, too, since they are able to stabilize emulsions. The polymeric micelles are shown to exhibit a high ability to solubilize hydrophobic substances in water.}, subject = {Blockcopolymere}, language = {en} } @phdthesis{Ghasemzadeh2005, author = {Ghasemzadeh, Mohammad}, title = {A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6378}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial.}, subject = {Bin{\"a}res Entscheidungsdiagramm}, language = {en} } @phdthesis{Boroudjerdi2005, author = {Boroudjerdi, Hoda}, title = {Charged polymer-macroion complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6282}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This work explores the equilibrium structure and thermodynamic phase behavior of complexes formed by charged polymer chains (polyelectrolytes) and oppositely charged spheres (macroions). Polyelectrolyte-macroion complexes form a common pattern in soft-matter physics, chemistry and biology, and enter in numerous technological applications as well. From a fundamental point of view, such complexes are interesting in that they combine the subtle interplay between electrostatic interactions and elastic as well as entropic effects due to conformational changes of the polymer chain, giving rise to a wide range of structural properties. This forms the central theme of theoretical studies presented in this thesis, which concentrate on a number of different problems involving strongly coupled complexes, i.e. complexes that are characterized by a large adsorption energy and small chain fluctuations. In the first part, a global analysis of the structural phase behavior of a single polyelectrolyte-macroion complex is presented based on a dimensionless representation, yielding results that cover a wide range of realistic system parameters. Emphasize is made on the interplay between the effects due to the polyelectrolytes chain length, salt concentration and the macroion charge as well as the mechanical chain persistence length. The results are summarized into generic phase diagrams characterizing the wrapping-dewrapping behavior of a polyelectrolyte chain on a macroion. A fully wrapped chain state is typically obtained at intermediate salt concentrations and chain lengths, where the amount of polyelectrolyte charge adsorbed on the macroion typically exceeds the bare macroion charge leading thus to a highly overcharged complex. Perhaps the most striking features occur when a single long polyelectrolyte chain is complexed with many oppositely charged spheres. In biology, such complexes form between DNA (which carries the cell's genetic information) and small oppositely charged histone proteins serving as an efficient mechanism for packing a huge amount of DNA into the micron-size cell nucleus in eucaryotic cells. The resultant complex fiber, known as the chromatin fiber, appears with a diameter of 30~nm under physiological conditions. Recent experiments indicate a zig-zag spatial arrangement for individual DNA-histone complexes (nucleosome core particles) along the chromatin fiber. A numerical method is introduced in this thesis based on a simple generic chain-sphere cell model that enables one to investigate the mechanism of fiber formation on a systematic level by incorporating electrostatic and elastic contributions. As will be shown, stable complex fibers exhibit an impressive variety of structures including zig-zag, solenoidal and beads-on-a-string patterns, depending on system parameters such as salt concentration, sphere charge as well as the chain contour length (per sphere). The present results predict fibers of compact zig-zag structure within the physiologically relevant regime with a diameter of about 30~nm, when DNA-histone parameters are adopted. In the next part, a numerical method is developed in order to investigate the role of thermal fluctuations on the structure and thermodynamic phase behavior of polyelectrolyte-macroion complexes. This is based on a saddle-point approximation, which allows to describe the experimentally observed reaction (or complexation) equilibrium in a dilute solution of polyelectrolytes and macroions on a systematic level. This equilibrium is determined by the entropy loss a single polyelectrolyte chain suffers as it binds to an oppositely charged macroion. This latter quantity can be calculated from the spectrum of polyelectrolyte fluctuations around a macroion, which is determined by means of a normal-mode analysis. Thereby, a stability phase diagram is obtained, which exhibits qualitative agreement with experimental findings. At elevated complex concentrations, one needs to account for the inter-complex interactions as well. It will be shown that at small separations, complexes undergo structural changes in such a way that positive patches from one complex match up with negative patches on the other. Furthermore, one of the polyelectrolyte chains may bridge between the two complexes. These mechanisms lead to a strong inter-complex attraction. As a result, the second virial coefficient associated with the inter-complex interaction becomes negative at intermediate salt concentrations in qualitative agreement with recent experiments on solutions of nucleosome core particles.}, subject = {Biopolymere}, language = {en} } @phdthesis{Scholderer2004, author = {Scholderer, Joachim}, title = {Consumer attitudes towards genetically modified foods in Europe : structure and changeability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6245}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Genetically modified foods have been at the center of debate in European consumer policy in the last two decades. Although the quasi-moratorium has been lifted in May 2004 and the road to the market is in principle reopened, strategies for product introduction are lacking. The aim of the research is to assess potential barriers in the area of consumer acceptance and suggest ways in which they can be overcome. After a short history of the genetically modified foods debate in Europe, the existing literature is reviewed. Although previous research converges in its central results, issues that are more fundamental have remained unresolved. Based on classical approaches in attitude research and modern theories of social cognition, a general model of the structure, function and dynamics of whole systems of attitudes is developed. The predictions of the model are empirically tested based on an attitude survey (N = 2000) and two attitude change experiments (N = 1400 and N = 750). All three studies were conducted in parallel in four EU member states. The results show that consumer attitudes towards genetically modified foods are embedded into a structured system of general socio-political attitudes. The system operates as a schema through which consumers form global evaluations of the technology. Specific risk and benefit judgments are mere epiphenomena of this process. Risk-benefit trade-offs, as often presupposed in the literature, do not appear to enter the process. The attitudes have a value-expressive function; their purpose is not just a temporary reduction of complexity. These properties render the system utterly resistant to communicative interventions. At the same time, it exerts stong anchoring effects on the processing of new information. Communication of benefit arguments can trigger boomerang effects and backfire on the credibility of the communicator when the arguments contrast with preexisting attitudes held by the consumer. Only direct sensory experience with high-quality products can partially bypass the system and lead to the formation of alternative attitude structures. Therefore, the recommended market introduction strategy for genetically modified foods is the simultaneous and coordinated launch of many high-quality products. Point of sale promotions should be the central instrument. Information campaigns, on the other hand, are not likely to have an effect on the product and technology acceptance of European consumers.}, subject = {Verbraucherforschung}, language = {en} } @phdthesis{Nita2005, author = {Nita, Ana-Silvia}, title = {Genetic mapping and molecular characterization of tbr1 mutant in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5992}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Arabidopsis thaliana trichomes exhibit strong birefringence under polarized light, a characteristic of cell walls containing large amounts of highly ordered cellulose microfibrils. The tbr1 mutant of Arabidopsis lacks trichome birefringence and is deficient in secondary cell wall cellulose synthesis (Potikha and Delmer, 1995). The TBR gene was identified by recombinational mapping, candidate gene sequencing and molecular complementation using genomic cosmid clones, as well as a p35S:TBR genomic DNA construct, fully rescuing the mutant phenotype in both cases. The only mutant allele available (tbr-1) carries a substitution (G to E) in a conserved aminoacid domain of the protein. TBR gene structure was proved to have a longer size than the one found to be annotated at the time of identification in the data-base. A full cDNA clone containing the full transcript was available and also complementation experiments using different gene fragments (annotated and suggested) leaded to the result that TBR gene is indeed, longer. TBR encodes a novel plant-specific protein with predicted plasma membrane localization, therefore being consistent with idea that is required for-, or is a novel component of a functional cellulose synthase complex. TBR is part of an Arabidopsis gene/protein family, (TBL-trichome birefringence like) which, depending on homology, comprises up to 20 members, none of which has a biological or biochemical function attributed. T-DNA insertion lines in TBR gene and two close homologues have been screened by PCR, but no homozygous were found and no trichomes phenotype was identified. Promoter-GUS lines were produced for TBR, as well as for its two closest homologues (one being a segmentally duplicated gene on chromosome III), using 1.6-2 kb of promoter sequence upstream of the annotated start codons. The TBR promoter was the only one of the three that yielded trichome expression, this probably explaining the phenotype of the TBR mutant. Moreover, TBR is expressed in leaves, in growing lateral roots, and in vascular tissues of young Arabidopsis seedlings and plantlets. Later on, the expression appears in inflorescens, stems, flowers and green siliques. This expression pattern is largely overlapping with those of the two analyzed homologues and it corresponds with data of RT-PCR expression profiling performed for TBR and the two analyzed homologues in different tissues, at different developmental stages. Biochemical analysis of cell wall (leaves and trichomes), as GC and MALDI-TOF, were performed, but revealed no major differences between tbr1 and wild type plants. Scanning electron microscopy analysis and cell wall polysaccharides antibody labeling showed a clear difference in the trichomes cell wall structure between mutant plant and wild type.}, subject = {tbr mutant}, language = {en} } @phdthesis{Hattermann2005, author = {Hattermann, Fred}, title = {Integrated modelling of Global Change impacts in the German Elbe River Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6052}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 \%, but with high uncertainty (covering the range from -15.3 \% to +14.8 \%), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 \%. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor.}, subject = {Hydrologie}, language = {en} }