@article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} } @article{VazdaCruzErtanCoutoetal.2017, author = {Vaz da Cruz, Vinicius and Ertan, Emelie and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and {\AA}gren, Hans and Odelius, Michael and F{\"o}hlisch, Alexander and Kimberg, Victor}, title = {A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp01215b}, pages = {19573 -- 19589}, year = {2017}, abstract = {In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.}, language = {en} } @article{NorellEckertVanKuikenetal.2019, author = {Norell, Jesper and Eckert, Sebastian and Van Kuiken, Benjamin E. and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {151}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5109840}, pages = {12}, year = {2019}, abstract = {The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer.}, language = {en} } @phdthesis{Eckert2019, author = {Eckert, Sebastian}, title = {Accessing active sites of molecular proton dynamics}, doi = {10.25932/publishup-42587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425870}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 193}, year = {2019}, abstract = {The unceasing impact of intense sunlight on earth constitutes a continuous source of energy fueling countless natural processes. On a molecular level, the energy contained in the electromagnetic radiation is transferred through photochemical processes into chemical or thermal energy. In the course of such processes, photo-excitations promote molecules into thermally inaccessible excited states. This induces adaptations of their molecular geometry according to the properties of the excited state. Decay processes towards energetically lower lying states in transient molecular geometries result in the formation of excited state relaxation pathways. The photo-chemical relaxation mechanisms depend on the studied system itself, the interactions with its chemical environment and the character of the involved states. This thesis focuses on systems in which photo-induced deprotonation processes occur at specific atomic sites. To detect these excited-state proton dynamics at the affected atoms, a local probe of molecular electronic structure is required. Therefore, site-selective and orbital-specific K-edge soft X-ray spectroscopy techniques are used here to detect photo-induced proton dynamics in gaseous and liquid sample environments. The protonation of nitrogen (N) sites in organic molecules and the oxygen (O) atom in the water molecule are probed locally through transitions between 1s orbitals and the p-derived molecular valence electronic structure. The used techniques are X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Both yield access to the unoccupied local valence electronic structure, whereas the latter additionally probes occupied states. We apply these probes in optical pump X-ray probe experiments to investigate valence excited-state proton transfer capabilities of aqueous 2-thiopyridone. A characteristic shift of N K-edge X-ray absorption resonances as well as a distinct X-ray emission line are established by us as spectral fingerprints of N deprotonation in the system. We utilize them to identify photo-induced N deprotonation of 2-thiopyridone on femtosecond timescales, in optical pump N K-edge RIXS probe measurements. We further establish excited state proton transfer mechanisms on picosecond and nanosecond timescales along the dominant relaxation pathways of 2-thiopyridone using transient N K-edge XAS. Despite being an excellent probe mechanism for valence excited-state proton dynamics, the K-edge core-excitation itself also disturbs the electronic structure at specific sites of a molecule. The rapid reaction of protons to 1s photo-excitations can yield directional structural distortions within the femtosecond core-excited state lifetime. These directional proton dynamics can change the energetic separation of eigenstates of the system and alter probabilities for radiative decay between them. Both effects yield spectral signatures of the dynamics in RIXS spectra. Using these signatures of RIXS transitions into electronically excited states, we investigate proton dynamics induced by N K-edge excitation in the amino-acid histidine. The minor core-excited state dynamics of histidine in basic and neutral chemical environments allow us to establish XAS and RIXS spectral signatures of different N protonation states at its imidazole N sites. Based on these signatures, we identify an excitation-site-independent N-H dissociation for N K-edge excitation under acidic conditions. Such directional structural deformations, induced by core-excitations, also make proton dynamics in electronic ground states accessible through RIXS transitions into vibrationally excited states. In that context, we interpret high resolution RIXS spectra of the water molecule for three O K-edge resonances based on quantum-chemical wave packet propagation simulations. We show that highly oriented ground state vibrational modes of coupled nuclear motion can be populated through RIXS processes by preparation of core-excited state nuclear wave packets with the same directionality. Based on that, we analytically derive the possibility to extract one-dimensional directional cuts through potential energy surfaces of molecular systems from the corresponding RIXS spectra. We further verify this concept through the extraction of the gas-phase water ground state potential along three coordinates from experimental data in comparison to quantum-chemical simulations of the potential energy surface. This thesis also contains contributions to instrumentation development for investigations of photo-induced molecular dynamics at high brilliance X-ray light sources. We characterize the setup used for the transient valence-excited state XAS measurements of 2-thiopyridone. Therein, a sub-micrometer thin liquid sample environment is established employing in-vacuum flat-jet technology, which enables a transmission experimental geometry. In combination with a MHz-laser system, we achieve a high detection sensitivity for photo-induced X-ray absorption changes. Additionally, we present conceptual improvements for temporal X-ray optical cross-correlation techniques based on transient changes of multilayer optical properties, which are crucial for the realization of femtosecond time-resolved studies at synchrotrons and free-electron lasers.}, language = {en} } @article{EckertVazdaCruzOchmannetal.2021, author = {Eckert, Sebastian and Vaz da Cruz, Vin{\´i}cius and Ochmann, Miguel and Ahnen, Inga von and F{\"o}hlisch, Alexander and Huse, Nils}, title = {Breaking the symmetry of pyrimidine}, series = {The journal of physical chemistry letters}, volume = {12}, journal = {The journal of physical chemistry letters}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.1c01865}, pages = {8637 -- 8643}, year = {2021}, abstract = {Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C-2v point group, in an aqueous solution environment, using scattering though its 2a(2) resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b(2) and 11a(1) orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.}, language = {en} } @article{NiskanenFondellSahleetal.2019, author = {Niskanen, Johannes and Fondell, Mattis and Sahle, Christoph J. and Eckert, Sebastian and Jay, Raphael Martin and Gilmore, Keith and Pietzsch, Annette and Dantz, Marcus and Lu, Xingye and McNally, Daniel E. and Schmitt, Thorsten and Vaz da Cruz, Vinicius and Kimberg, Victor and F{\"o}hlisch, Alexander and Gel'mukhanov, Faris}, title = {Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {10}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1815701116}, pages = {4058 -- 4063}, year = {2019}, abstract = {The phase diagram of water harbors controversial views on underlying structural properties of its constituting molecular moieties, its fluctuating hydrogen-bonding network, as well as pair-correlation functions. In this work, long energy-range detection of the X-ray absorption allows us to unambiguously calibrate the spectra for water gas, liquid, and ice by the experimental atomic ionization cross-section. In liquid water, we extract the mean value of 1.74 +/- 2.1\% donated and accepted hydrogen bonds per molecule, pointing to a continuous-distribution model. In addition, resonant inelastic X-ray scattering with unprecedented energy resolution also supports continuous distribution of molecular neighborhoods within liquid water, as do X-ray emission spectra once the femtosecond scattering duration and proton dynamics in resonant X-ray-matter interaction are taken into account. Thus, X-ray spectra of liquid water in ambient conditions can be understood without a two-structure model, whereas the occurrence of nanoscale-length correlations within the continuous distribution remains open.}, language = {en} } @article{JayEckertVazdaCruzetal.2019, author = {Jay, Raphael Martin and Eckert, Sebastian and Vaz da Cruz, Vinicius and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201904761}, pages = {10742 -- 10746}, year = {2019}, abstract = {Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer.}, language = {en} } @article{PietzschNiskanenVazdaCruzetal.2022, author = {Pietzsch, Annette and Niskanen, Johannes and Vaz da Cruz, Vinicius and B{\"u}chner, Robby and Eckert, Sebastian and Fondell, Mattis and Jay, Raphael Martin and Lu, Xingye and McNally, Daniel and Schmitt, Thorsten and F{\"o}hlisch, Alexander}, title = {Cuts through the manifold of molecular H2O potential energy surfaces in liquid water at ambient conditions}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {28}, publisher = {National Acad. of Sciences}, address = {Washington, DC}, issn = {1091-6490}, doi = {10.1073/pnas.2118101119}, pages = {6}, year = {2022}, abstract = {The fluctuating hydrogen bridge bonded network of liquid water at ambient conditions entails a varied ensemble of the underlying constituting H2O molecular moieties. This is mirrored in a manifold of the H2O molecular potentials. Subnatural line width resonant inelastic X-ray scattering allowed us to quantify the manifold of molecular potential energy surfaces along the H2O symmetric normal mode and the local asymmetric O-H bond coordinate up to 1 and 1.5 angstrom, respectively. The comparison of the single H2O molecular potentials and spectroscopic signatures with the ambient conditions liquid phase H2O molecular potentials is done on various levels. In the gas phase, first principles, Morse potentials, and stepwise harmonic potential reconstruction have been employed and benchmarked. In the liquid phase the determination of the potential energy manifold along the local asymmetric O-H bond coordinate from resonant inelastic X-ray scattering via the bound state oxygen ls to 4a(1) resonance is treated within these frameworks. The potential energy surface manifold along the symmetric stretch from resonant inelastic X-ray scattering via the oxygen 1 s to 2b(2) resonance is based on stepwise harmonic reconstruction. We find in liquid water at ambient conditions H2O molecular potentials ranging from the weak interaction limit to strongly distorted potentials which are put into perspective to established parameters, i.e., intermolecular O-H, H-H, and O-O correlation lengths from neutron scattering.}, language = {en} } @article{JayNorellEckertetal.2018, author = {Jay, Raphael M. and Norell, Jesper and Eckert, Sebastian and Hantschmann, Markus and Beye, Martin and Kennedy, Brian and Quevedo, Wilson and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and Hoffmann, Matthias C. and Mitra, Ankush and Moeller, Stefan P. and Nordlund, Dennis and Zhang, Wenkai and Liang, Huiyang W. and Kunnus, Kristian and Kubicek, Katharina and Techert, Simone A. and Lundberg, Marcus and Wernet, Philippe and Gaffney, Kelly and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b01429}, pages = {3538 -- 3543}, year = {2018}, abstract = {Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.}, language = {en} } @misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species}, series = {Physical chemistry, chemical physics}, journal = {Physical chemistry, chemical physics}, number = {20}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/c7cp08326b}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} }