@article{BeyversOhtsukiSaalfrank2006, author = {Beyvers, Stephanie and Ohtsuki, Y and Saalfrank, Peter}, title = {Optimal control in a dissipative system : vibrational excitation of CO/Cu(100) by IR pulses}, issn = {0021-9606}, doi = {10.1063/1.2206593}, year = {2006}, abstract = {The question as to whether state-selective population of molecular vibrational levels by shaped infrared laser pulses is possible in a condensed phase environment is of central importance for such diverse fields as time-resolved spectroscopy, quantum computing, or "vibrationally mediated chemistry." This question is addressed here for a model system, representing carbon monoxide adsorbed on a Cu(100) surface. Three of the six vibrational modes are considered explicitly, namely, the CO stretch vibration, the CO-surface vibration, and a frustrated translation. Optimized infrared pulses for state-selective excitation of "bright" and "dark" vibrational levels are designed by optimal control theory in the framework of a Markovian open-system density matrix approach, with energy flow to substrate electrons and phonons, phase relaxation, and finite temperature accounted for. The pulses are analyzed by their Husimi "quasiprobability" distribution in time-energy space.}, language = {en} } @article{SaalfrankNestAndrianovetal.2006, author = {Saalfrank, Peter and Nest, Mathias and Andrianov, Igor V. and Klamroth, Tillmann and Kroner, Dominic and Beyvers, Stephanie}, title = {Quantum dynamics of laser-induced desorption from metal and semiconductor surfaces, and related phenomena}, volume = {18}, number = {30}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1361-648X}, doi = {10.1088/0953-8984/18/30/S05}, pages = {S1425 -- S1459}, year = {2006}, abstract = {Recent progress towards a quantum theory of laser-induced desorption and related phenomena is reviewed, for specific examples. These comprise the photodesorption of NO from Pt(111), the scanning tunnelling microscope and laser- induced desorption and switching of H at Si(100), and the electron stimulated desorption and dissociation of CO at Ru(0001). The theoretical methods used for nuclear dynamics range from open-system density matrix theory over nonadiabatically coupled multi-state models to electron-nuclear wavepackets. Also, aspects of time-dependent spectroscopy to probe ultrafast nonadiabatic processes at surfaces will be considered for the example of two-photon photoemission of solvated electrons in ice layers on Cu(111)}, language = {en} }