@article{KamjunkeBohnGrey2006, author = {Kamjunke, Norbert and Bohn, Christiane and Grey, John}, title = {Utilisation of dissolved organic carbon from different sources by pelagic bacteria in an acidic mining lake}, issn = {0003-9136}, doi = {10.1127/0003-9136/2006/0165-0355}, year = {2006}, abstract = {We compared growth rates and efficiencies of pelagic bacteria from an extremely acidic mining lake (pH 2.6, mean depth 4.6m) supplied with different sources of carbon: (1) excreted by phytoplankton, (2) derived from benthic algae, (3) entering the lake via ground water, and (4) leached from leaf litter. Bacteria exhibited high growth rate and efficiency on exudates of pelagic and benthic algae. In contrast, they showed a lower growth rate and efficiency with organic carbon from ground water, and grew at a very high rate but a very low efficiency on leaf leachate. Results from stable isotope analyses indicate a greater importance of benthic exudates and leaf leachate for bacteria in the epilimnion, and a higher impact of ground water sources in the hypolimnion. Given the magnitude of differential source inputs into the lake, we suggest that benthic primary production was the most important carbon source for pelagic bacteria. The benthic-pelagic coupling seems to be more relevant in this shallow acidic lake with low pelagic carbon dioxide concentrations than in neutral lakes}, language = {en} } @article{GaedkeKamjunke2006, author = {Gaedke, Ursula and Kamjunke, Norbert}, title = {Structural and functional properties of low- and high-diversity planktonic food webs}, issn = {0142-7873}, doi = {10.1093/plankt/fb1003}, year = {2006}, abstract = {To test the consequences of decreased diversity and exclusion of keystone species, we compared the planktonic food webs in two acidic (pH <= 3), species-poor mining lakes with those in two species-rich, neutral lakes. The ratio of heterotrophic to autotrophic biomass (HIA) was similar in acidic and neutral lakes with comparable productivity. However, food webs in both acidic lakes were largely restricted to two trophic levels in contrast to the four levels found in neutral lakes. This restriction in food chain length was attributed to the absence of efficient secondary consumers, rather than to productivity or lake size which resulted in unusually low predator-prey weight ratios, with small top predators hardly exceeding their pry in size. In contrast to the neutral lakes, plankton biomass size spectra of acidic lakes were discontinuous due to a lack of major functional groups. The unique size-dependence of feeding modes in pelagic food webs, with bacteria in the smallest size classes followed by autotrophs, herbivores and carnivores, was maintained for bacteria but the other feeding modes strongly overlapped in size. Thus, their characteristic succession along the size gradient was roughly preserved under extreme conditions but the flow of energy along the size gradient was truncated in the acidic lakes. For most but not all attributes studied, differences were larger between acidic and neutral lakes than between neutral lakes of different trophic state}, language = {en} }