@article{HeinmuellerPetitjeanLedouxetal.2006, author = {Heinm{\"u}ller, Janine and Petitjean, Patrick and Ledoux, Cedric and Caucci, Sara and Srianand, Raghunathan}, title = {Kinematics and star formation activity in the z(abs)=2.03954 damped Lyman-alpha system towards PKS 0458-020}, issn = {0004-6361}, doi = {10.1051/0004-6361:20053910}, year = {2006}, abstract = {We present UVES observations of the log N(H I) = 21.7 damped Lyman-alpha system at z(abs) = 2.03954 towards the quasar PKS 0458-020. Hi Lyman-alpha emission is detected in the center of the damped Lyman-alpha absorption trough. Metallicities are derived for Mg II, Si II, P II, Cr II, Mn II, Fe II and Zn II and are found to be -1.21 +/- 0.12, - 1.28 +/- 0.20, -1.54 +/- 0.11, -1.66 +/- 0.10, -2.05 +/- 0.11, -1.87 +/- 0.11, -1.22 +/- 0.10, respectively, relative to solar. The depletion factor is therefore of the order of [Zn/Fe] = 0.65. We observe metal absorption lines to be blueshifted compared to the Lyman-alpha emission up to a maximum of similar to 100 and 200 km s(-1) for low and high- ionization species respectively. This can be interpreted either as the consequence of rotation in a large (similar to 7 kpc) disk or as the imprint of a galactic wind. The star formation rate (SFR) derived from the Lyman-alpha emission, 1.6 M-circle dot yr(-1), is compared with that estimated from the observed C II* absorption. No molecular hydrogen is detected in our data, yielding a molecular fraction log f < -6.52. This absence of H-2 can be explained as the consequence of a high ambient UV flux which is one order of magnitude larger than the radiation field in the ISM of our Galaxy and originates in the observed emitting region}, language = {en} }