@article{ThammSchollReimetal.2017, author = {Thamm, Markus and Scholl, Christina and Reim, Tina and Gruebel, Kornelia and Moeller, Karin and Rossler, Wolfgang and Scheiner, Ricarda}, title = {Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain}, series = {The journal of comparative neurology}, volume = {525}, journal = {The journal of comparative neurology}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.24228}, pages = {2615 -- 2631}, year = {2017}, abstract = {Tyramine is an important neurotransmitter, neuromodulator, and neurohormone in insects. In honeybees, it is assumed to have functions in modulating sensory responsiveness and controlling motor behavior. Tyramine can bind to two characterized receptors in honeybees, both of which are coupled to intracellular cAMP pathways. How tyramine acts on neuronal, cellular and circuit levels is unclear. We investigated the spatial brain expression of the tyramine receptor AmTAR1 using a specific antibody. This antibody detects a membrane protein of the expected molecular weight in western blot analysis. In honeybee brains, it labels different structures which process sensory information. Labeling along the antennal nerve, in projections of the dorsal lobe and in the gnathal ganglion suggest that tyramine receptors are involved in modulating gustatory and tactile perception. Furthermore, the ellipsoid body of the central complex and giant synapses in the lateral complex show AmTAR1-like immunoreactivity (AmTAR1-IR), suggesting a role of this receptor in modulating sky-compass information and/or higher sensor-motor control. Additionally, intense signals derive from the mushroom bodies, higher-order integration centers for olfactory, visual, gustatory and tactile information. To investigate whether AmTAR1-expressing brain structures are in vicinity to tyramine releasing sites, a specific tyramine antibody was applied. Tyramine-like labeling was observed in AmTAR1-IR positive structures, although it was sometimes weak and we did not always find a direct match of ligand and receptor. Moreover, tyramine-like immunoreactivity was also found in brain regions without AmTAR1-IR (optic lobes, antennal lobes), indicating that other tyramine-specific receptors may be expressed there.}, language = {en} } @article{Scheiner2012, author = {Scheiner, Ricarda}, title = {Birth weight and sucrose responsiveness predict cognitive skills of honeybee foragers}, series = {Animal behaviour}, volume = {84}, journal = {Animal behaviour}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {0003-3472}, doi = {10.1016/j.anbehav.2012.05.011}, pages = {305 -- 308}, year = {2012}, abstract = {Honeybees, Apis mellifera, can differ considerably in their birth weights but the consequences of these weight differences for behaviour are unknown. I investigated how these birth weight differences affected their cognitive skills when the bees reached foraging age. Individual sucrose responsiveness measured by the proboscis extension response is a strong determinant of appetitive olfactory learning performance in honeybees. Most of the observed learning differences between individuals or between genetic bee strains correlate with differences in their sucrose responsiveness. My second aim was therefore to investigate whether the sucrose responsiveness of newly emerged bees could predict the learning behaviour of the bees 3 weeks later. Both birth weight and sucrose responsiveness measured at emergence could predict olfactory learning scores as demonstrated by significant positive correlations. Heavy bees and bees with high sucrose responsiveness later learned better than lighter individuals or bees with lower responsiveness to sucrose at emergence. These results demonstrate for the first time a fundamental relationship between sensory responsiveness and morphology at emergence and later cognitive skills in insects. Because sensory responsiveness is closely linked to division of labour in honeybees, differences in weight and sucrose responsiveness at emergence might be involved in regulating division of labour.}, language = {en} }