@misc{SchnitzlerPinzoneAutenriethetal.2018, author = {Schnitzler, Joseph G. and Pinzone, Marianna and Autenrieth, Marijke and van Neer, Abbo and IJsseldijk, Lonneke L. and Barber, Jonathan L. and Deaville, Rob and Jepson, Paul and Brownlow, Andrew and Schaffeld, Tobias and Thom{\´e}, Jean-Pierre and Tiedemann, Ralph and Das, Krishna and Siebert, Ursula}, title = {Inter-individual differences in contamination profiles as tracer of social group association in stranded sperm whales}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {692}, issn = {1866-8372}, doi = {10.25932/publishup-42652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426525}, pages = {11}, year = {2018}, abstract = {Ecological and physiological factors lead to different contamination patterns in individual marine mammals. The objective of the present study was to assess whether variations in contamination profiles are indicative of social structures of young male sperm whales as they might reflect a variation in feeding preferences and/or in utilized feeding grounds. We used a total of 61 variables associated with organic compounds and trace element concentrations measured in muscle, liver, kidney and blubber gained from 24 sperm whales that stranded in the North Sea in January and February 2016. Combining contaminant and genetic data, there is evidence for at least two cohorts with different origin among these stranded sperm whales; one from the Canary Island region and one from the northern part of the Atlantic. While genetic data unravel relatedness and kinship, contamination data integrate over areas, where animals occured during their lifetime. Especially in long-lived animals with a large migratory potential, as sperm whales, contamination data may carry highly relevant information about aggregation through time and space.}, language = {en} } @misc{LahTrenseBenkeetal.2016, author = {Lah, Ljerka and Trense, Daronja and Benke, Harald and Berggren, Per and Gunnlaugsson, Þorvaldur and Lockyer, Christina and {\"O}zt{\"u}rk, Ayaka and {\"O}zt{\"u}rk, Bayram and Pawliczka, Iwona and Roos, Anna and Siebert, Ursula and Sk{\´o}ra, Krzysztof and V{\´i}kingsson, G{\´i}sli and Tiedemann, Ralph}, title = {Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100813}, pages = {23 Seiten}, year = {2016}, abstract = {The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.}, language = {en} }