@misc{HeistermannCollisDixonetal.2015, author = {Heistermann, Maik and Collis, Scott and Dixon, M. J. and Helmus, J. J. and Henja, A. and Michelson, D. B. and Pfaff, Thomas}, title = {An Open Virtual Machine for Cross-Platform Weather Radar Science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96604}, pages = {1641 -- 1645}, year = {2015}, abstract = {In a recent BAMS article, it is argued that community-based Open Source Software (OSS) could foster scientific progress in weather radar research, and make weather radar software more affordable, flexible, transparent, sustainable, and interoperable. Nevertheless, it can be challenging for potential developers and users to realize these benefits: tools are often cumbersome to install; different operating systems may have particular issues, or may not be supported at all; and many tools have steep learning curves. To overcome some of these barriers, we present an open, community-based virtual machine (VM). This VM can be run on any operating system, and guarantees reproducibility of results across platforms. It contains a suite of independent OSS weather radar tools (BALTRAD, Py-ART, wradlib, RSL, and Radx), and a scientific Python stack. Furthermore, it features a suite of recipes that work out of the box and provide guidance on how to use the different OSS tools alone and together. The code to build the VM from source is hosted on GitHub, which allows the VM to grow with its community. We argue that the VM presents another step toward Open (Weather Radar) Science. It can be used as a quick way to get started, for teaching, or for benchmarking and combining different tools. It can foster the idea of reproducible research in scientific publishing. Being scalable and extendable, it might even allow for real-time data processing. We expect the VM to catalyze progress toward interoperability, and to lower the barrier for new users and developers, thus extending the weather radar community and user base.}, language = {en} } @misc{VormoorLawrenceHeistermannetal.2015, author = {Vormoor, Klaus Josef and Lawrence, D. and Heistermann, Maik and Bronstert, Axel}, title = {Climate change impacts on the seasonality and generation processes of floods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84366}, year = {2015}, abstract = {Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961-1990) and a future (2071-2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature.We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality, which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions.}, language = {en} }