@article{TaguchiGotoMatsuokaetal.2023, author = {Taguchi, Mioko and Goto, Mutsuo and Matsuoka, Koji and Tiedemann, Ralph and Pastene, Luis A.}, title = {Population genetic structure of Bryde's whales (Balaenoptera brydei) on the central and western North Pacific feeding grounds}, series = {Canadian Journal of Fisheries and Aquatic Sciences}, volume = {80}, journal = {Canadian Journal of Fisheries and Aquatic Sciences}, number = {1}, publisher = {Canadian science publishing}, address = {Ottawa}, issn = {0706-652X}, doi = {10.1139/cjfas-2022-0005}, pages = {142 -- 155}, year = {2023}, abstract = {The genetic structure of Bryde's whale (Balaenoptera brydei) on the central and western North Pacific feeding grounds was investigated using a total of 1195 mitochondrial control region sequences and 1182 microsatellite genotypes at 17 loci in specimens collected from three longitudinal areas, 1W (135 degrees E-165 degrees E), 1E (165 degrees E-180 degrees), and 2 (180 degrees-155 degrees W). Genetic diversities were similar among areas and a haplotype network did not show any geographic structure, while an analysis of molecular variance found evidence of genetic structure in this species. Pairwise FST and G'ST estimates and heterogeneity tests attributed this structure to weak but significant differentiation between areas 1W/1E and 2. A Mantel test and a high-resolution analysis of genetic diversity statistics showed a weak spatial cline of genetic differentiation. These findings could be reconciled by two possible stock structure scenarios: (1) a single population with kin-association affecting feeding ground preference and (2) two populations with feeding ground preference for either area 1W or area 2. An estimated dispersal rate between areas 1W and 2 indicates that both scenarios should be considered as a precautionary principle in stock assessments.}, language = {en} } @misc{ParrySchlaegelTiedemannetal.2022, author = {Parry, Victor and Schl{\"a}gel, Ulrike E. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Behavioural Responses of Defended and Undefended Prey to Their Predator}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1302}, issn = {1866-8372}, doi = {10.25932/publishup-57759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577594}, pages = {14}, year = {2022}, abstract = {Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.}, language = {en} } @article{ParrySchlaegelTiedemannetal.2022, author = {Parry, Victor and Schl{\"a}gel, Ulrike E. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Behavioural Responses of Defended and Undefended Prey to Their Predator}, series = {Biology}, volume = {11}, journal = {Biology}, number = {8}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-7737}, doi = {10.3390/biology11081217}, pages = {14}, year = {2022}, abstract = {Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.}, language = {en} } @article{TebbeOttensmannHavensteinetal.2022, author = {Tebbe, Jonas and Ottensmann, Meinolf and Havenstein, Katja and Efstratiou, Artemis and Lenz, Tobias L. and Caspers, Barbara A. and Forcada, Jaume and Tiedemann, Ralph and Hoffman, Joseph}, title = {Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-21658-7}, pages = {14}, year = {2022}, abstract = {The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity.}, language = {en} } @article{KiemelWeithoffTiedemann2022, author = {Kiemel, Katrin and Weithoff, Guntram and Tiedemann, Ralph}, title = {DNA metabarcoding reveals impact of local recruitment, dispersal, and hydroperiod on assembly of a zooplankton metacommunity}, series = {Molecular ecology}, volume = {32}, journal = {Molecular ecology}, number = {23}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.16627}, pages = {20}, year = {2022}, abstract = {Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity.}, language = {en} } @article{ParrySchlaegelTiedemannetal.2022, author = {Parry, Victor and Schl{\"a}gel, Ulrike E. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Behavioural responses of defended and undefended prey to their predator}, series = {Biology : open access journal}, volume = {11}, journal = {Biology : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11081217}, pages = {14}, year = {2022}, abstract = {Many animals that have to cope with predation have evolved mechanisms to reduce their predation risk. One of these mechanisms is change in morphology, for example, the development of spines. These spines are induced, when mothers receive chemical signals of a predator (kairomones) and their daughters are then equipped with defensive spines. We studied the behaviour of a prey and its predator when the prey is either defended or undefended. We used common aquatic micro-invertebrates, the rotifers Brachionus calyciflorus (prey) and Asplanchna brightwellii (predator) as experimental animals. We found that undefended prey increased its swimming speed in the presence of the predator. The striking result was that the defended prey did not respond to the predator's presence. This suggests that defended prey has a different response behaviour to a predator than undefended conspecifics. Our study provides further insights into complex zooplankton predator-prey interactions. Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.}, language = {en} } @article{KiemelDeCahsanParaskevopoulouetal.2022, author = {Kiemel, Katrin and De Cahsan, Binia and Paraskevopoulou, Sofia and Weithoff, Guntram and Tiedemann, Ralph}, title = {Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae)}, series = {Mitochondrial DNA. Part B-Resources}, volume = {7}, journal = {Mitochondrial DNA. Part B-Resources}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2380-2359}, doi = {10.1080/23802359.2022.2060765}, pages = {646 -- 648}, year = {2022}, abstract = {The Brachionus calyciflorus species complex was recently subdivided into four species, but genetic resources to resolve phylogenetic relationships within this complex are still lacking. We provide two complete mitochondrial (mt) genomes from B. calyciflorus sensu stricto (Germany, USA) and the mt coding sequences (cds) from a German B. fernandoi. Phylogenetic analysis placed our B. calyciflorus sensu stricto strains close to the published genomes of B. calyciflorus, forming the putative sister species to B. fernandoi. Global representatives of B. calyciflorus sensu stricto (i.e. Europe, USA, and China) are genetically closer related to each other than to B. fernandoi (average pairwise nucleotide diversity 0.079 intraspecific vs. 0.254 interspecific).}, language = {en} } @article{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-27137-3}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @misc{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1305}, issn = {1866-8372}, doi = {10.25932/publishup-57863}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578635}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @article{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-022-27137-3}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} }