@misc{WetzelKempkaKuehn2017, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Predicting macroscopic elastic rock properties requires detailed information on microstructure}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.195}, pages = {561 -- 570}, year = {2017}, abstract = {Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 \% for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young's moduli is significantly improved, when detailed spatial information are employed.}, language = {en} } @misc{KuehnLiNakatenetal.2017, author = {K{\"u}hn, Michael and Li, Qi and Nakaten, Natalie Christine and Kempka, Thomas}, title = {Integrated subsurface gas storage of CO2 and CH4 offers capacity and state-of-the-art technology for energy storage in China}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.039}, pages = {14 -- 18}, year = {2017}, abstract = {Integration and development of the energy supply in China and worldwide is a challenge for the years to come. The innovative idea presented here is based on an extension of the "power-to-gas-to-power" technology by establishing a closed carbon cycle. It is an implementation of a low-carbon energy system based on carbon dioxide capture and storage (CCS) to store and reuse wind and solar energy. The Chenjiacun storage project in China compares well with the German case study for the towns Potsdam and Brandenburg/Havel in the Federal State of Brandenburg based on the Ketzin pilot site for CCS.}, language = {en} } @misc{KuehnKempkadeLuciaetal.2017, author = {K{\"u}hn, Michael and Kempka, Thomas and de Lucia, Marco and Scheck-Wenderoth, Magdalena}, title = {Dissolved CO2 storage in geological formations with low pressure, low risk and large capacities}, series = {Energy procedia}, volume = {114}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.03.1607}, pages = {4722 -- 4727}, year = {2017}, abstract = {Geological CO2 storage is a mitigation technology to reduce CO2 emissions from fossil fuel combustion. However, major concerns are the pressure increase and saltwater displacement in the mainly targeted deep groundwater aquifers due to injection of supercritical CO2. The suggested solution is storage of CO2 exclusively in the dissolved state. In our exemplary regional case study of the North East German Basin based on a highly resolved temperature and pressure distribution model and a newly developed reactive transport coupling, we have quantified that 4.7 Gt of CO2 can be stored in solution compared to 1.5 Gt in the supercritical state.}, language = {en} } @misc{NakatenKempka2019, author = {Nakaten, Natalie Christine and Kempka, Thomas}, title = {Retraction: Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness. (Retraction of Vol 10, art no 1643, 2017)}, series = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, volume = {12}, journal = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en12173253}, pages = {1}, year = {2019}, language = {en} }