@misc{OskinovaFeldmeierKretschmar2012, author = {Oskinova, Lida and Feldmeier, Achim and Kretschmar, Peter}, title = {Clumped stellar winds in supergiant high-mass X-ray binaries}, series = {Postprint der universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprint der universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {573}, issn = {1866-8372}, doi = {10.25932/publishup-41391}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413916}, pages = {287 -- 288}, year = {2012}, abstract = {The clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the Bondi-Hoyle-Lyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. Photoionization of inhomogeneous winds is different from the photoinization of smooth winds. The degree of ionization is affected by the wind clumping. The wind clumping must also be taken into account when comparing the observed and model spectra of the photoionized stellar wind.}, language = {en} } @misc{OskinovaGuerreroHenaultBrunetetal.2012, author = {Oskinova, Lida and Guerrero, Mart{\´i}n A. and H{\´e}nault-Brunet, Vincent and Sun, W. and Chu, You-Hua and Evans, Chris and Gallagher, John S. and Gruendl, Robert A. and Reyes-Iturbide, Jorge}, title = {The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {591}, issn = {1866-8372}, doi = {10.25932/publishup-41513}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415135}, pages = {3}, year = {2012}, abstract = {SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.}, language = {en} }