@misc{PimenovaGoldobinRosenblumetal.2016, author = {Pimenova, Anastasiya V. and Goldobin, Denis S. and Rosenblum, Michael and Pikovskij, Arkadij}, title = {Interplay of coupling and common noise at the transition to synchrony in oscillator populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103471}, pages = {7}, year = {2016}, abstract = {There are two ways to synchronize oscillators: by coupling and by common forcing, which can be pure noise. By virtue of the Ott-Antonsen ansatz for sine-coupled phase oscillators, we obtain analytically tractable equations for the case where both coupling and common noise are present. While noise always tends to synchronize the phase oscillators, the repulsive coupling can act against synchrony, and we focus on this nontrivial situation. For identical oscillators, the fully synchronous state remains stable for small repulsive coupling; moreover it is an absorbing state which always wins over the asynchronous regime. For oscillators with a distribution of natural frequencies, we report on a counter-intuitive effect of dispersion (instead of usual convergence) of the oscillators frequencies at synchrony; the latter effect disappears if noise vanishes.}, language = {en} } @misc{MitzscherlingCuiKoopmanetal.2015, author = {Mitzscherling, Steffen and Cui, Qianling and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Dielectric function of two-phase colloid-polymer nanocomposite}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102695}, pages = {29465 -- 29474}, year = {2015}, abstract = {The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.}, language = {en} } @misc{DasPradhan2015, author = {Das, Samir and Pradhan, Basudev}, title = {Photophysical and photochemical properties of a family of isoelectronic tris chelated ruthenium(II) aza-/azo-aromatic complexes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102320}, pages = {73726 -- 73731}, year = {2015}, abstract = {We have investigated the electrochemical, spectroscopic and electroluminescent properties of a family of aza-aromatic complexes of ruthenium of type [RuII(bpy/phen)2(L)]2+ (4d6) with three isomeric L ligands, where, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline and the L ligands are 3-(2-pyridyl)[1,2,4]triazolo[1,5-a]pyridine (L1), 3-(2-pyridyl[1,2,3])triazolo[1,5-a]pyridine (L2) and 2-(2-pyridyl)[1,2,4]triazolo[1,5-a]pyridine (L3). The complexes display two bands in the visible region near 410-420 and 440-450 nm. The complexes are diamagnetic and show well defined 1H NMR lines. They are electroactive in acetonitrile solution and exhibit a well defined RuII/RuIII couple near 1.20 to 1.30 V and -1.40 to -1.50 V due to ligand reduction versus Saturated Calomel Electrode (SCE). The solutions are also luminescent, with peaks are near 600 nm. All the complexes are electroluminescent in nature with peaks lying near 580 nm. L1 and L3 ligated complexes with two bpy co-ligands show weak photoluminescence (PL) but stronger electroluminescence (EL) compared to corresponding L2 ligated analogues.}, language = {en} } @misc{Goychuk2016, author = {Goychuk, Igor}, title = {Quantum ergodicity breaking in semi-classical electron transfer dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102264}, pages = {11}, year = {2016}, abstract = {Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze(MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.}, language = {en} } @misc{PavlenkoSanderMitzscherlingetal.2016, author = {Pavlenko, Elena S. and Sander, Mathias and Mitzscherling, Steffen and Pudell, Jan-Etienne and Zamponi, Flavio and R{\"o}ssle, Matthias and Bojahr, Andre and Bargheer, Matias}, title = {Azobenzene - functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers}, volume = {8}, doi = {10.1039/C6NR01448H}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101996}, pages = {13297 -- 13302}, year = {2016}, abstract = {We introduce azobenzene-functionalized polyelectrolyte multilayers as efficient, inexpensive optoacoustic transducers for hyper-sound strain waves in the GHz range. By picosecond transient reflectivity measurements we study the creation of nanoscale strain waves, their reflection from interfaces, damping by scattering from nanoparticles and propagation in soft and hard adjacent materials like polymer layers, quartz and mica. The amplitude of the generated strain ε ∼ 5 × 10-4 is calibrated by ultrafast X-ray diffraction.}, language = {en} } @misc{FeldmannMaduarSanteretal.2016, author = {Feldmann, David and Maduar, Salim R. and Santer, Mark and Lomadze, Nino and Vinogradova, Olga I. and Santer, Svetlana}, title = {Manipulation of small particles at solid liquid interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100338}, pages = {10}, year = {2016}, abstract = {The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.}, language = {en} } @misc{deCarvalhoMetzlerCherstvy2016, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100295}, pages = {17}, year = {2016}, abstract = {We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition—demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces—are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-H{\"u}ckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-H{\"u}ckel result, such that the required critical surface charge density for polyelectrolyte adsorption σc increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems.}, language = {en} } @misc{deCarvalhoMetzlerCherstvy2014, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto charged Janus nanospheres}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98783}, pages = {12}, year = {2014}, abstract = {Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physico-chemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.}, language = {en} } @misc{LiuTkachovKomberetal.2014, author = {Liu, W. and Tkachov, R. and Komber, H. and Senkovskyy, V. and Schubert, M. and Wei, Z. and Facchetti, A. and Neher, Dieter and Kiriy, A.}, title = {Chain-growth polycondensation of perylene diimide-based copolymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98724}, pages = {8}, year = {2014}, abstract = {Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to Mw ≈ 50 kg mol-1 and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45\%) in all-polymer solar cells compared to NDI-based materials (15-30\%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.}, language = {en} } @misc{ReppertPuddellKocetal.2016, author = {Reppert, Alexander von and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98710}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} }