@misc{BaeurleTrindade2020, author = {B{\"a}urle, Isabel and Trindade, In{\^e}s}, title = {Chromatin regulation of somatic abiotic stress memory}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {17}, issn = {1866-8372}, doi = {10.25932/publishup-51666}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516668}, pages = {13}, year = {2020}, abstract = {In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.}, language = {en} } @misc{LaemkeBaeurle2017, author = {L{\"a}mke, J{\"o}rn and B{\"a}urle, Isabel}, title = {Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {792}, issn = {1866-8372}, doi = {10.25932/publishup-43623}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436236}, pages = {11}, year = {2017}, abstract = {Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.}, language = {en} } @misc{BrzezinkaAltmannBaeurle2018, author = {Brzezinka, Krzysztof and Altmann, Simone and B{\"a}urle, Isabel}, title = {BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {788}, issn = {1866-8372}, doi = {10.25932/publishup-43621}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436219}, pages = {11}, year = {2018}, abstract = {Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naive state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU-LIKE/NF Kappa BIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division.}, language = {en} }