@phdthesis{vonNordheim2018, author = {von Nordheim, Danny}, title = {Dielectric non-linearities of P(VDF-TrFE) single and multilayers for memory applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421778}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 109}, year = {2018}, abstract = {Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric thin films of different molar ratio have been studied with regard to data memory applications. Therefore, films with thicknesses of 200 nm and less have been spin coated from solution. Observations gained from single layers have been extended to multilayer capacitors and three terminal transistor devices. Besides conventional hysteresis measurements, the measurement of dielectric non-linearities has been used as a main tool of characterisation. Being a very sensitive and non-destructive method, non-linearity measurements are well suited for polarisation readout and property studies. Samples have been excited using a high quality, single-frequency sinusoidal voltage with an amplitude significantly smaller than the coercive field of the samples. The response was then measured at the excitation frequency and its higher harmonics. Using the measurement results, the linear and non-linear dielectric permittivities ɛ₁, ɛ₂ and ɛ₃ have been determined. The permittivities have been used to derive the temperature-dependent polarisation behaviour as well as the polarisation state and the order of the phase transitions. The coercive field in VDF-TrFE copolymers is high if compared to their ceramic competitors. Therefore, the film thickness had to be reduced significantly. Considering a switching voltage of 5 V and a coercive field of 50 MV/m, the film thickness has to be 100 nm and below. If the thickness becomes substantially smaller than the other dimensions, surface and interface layer effects become more pronounced. For thicker films of P(VDF-TrFE) with a molar fraction of 56/44 a second-order phase transition without a thermal hysteresis for an ɛ₁(T) temperature cycle has been predicted and observed. This however, could not be confirmed by the measurements of thinner films. A shift of transition temperatures as well as a temperature independent, non-switchable polarisation and a thermal hysteresis for P(VDF-TrFE) 56/44 have been observed. The impact of static electric fields on the polarisation and the phase transition has therefore been studied and simulated, showing that all aforementioned phenomena including a linear temperature dependence of the polarisation might originate from intrinsic electric fields. In further experiments the knowledge gained from single layer capacitors has been extended to bilayer copolymer thin films of different molar composition. Bilayers have been deposited by succeeding cycles of spin coating from solution. Single layers and their bilayer combination have been studied individually in order to prove the layers stability. The individual layers have been found to be physically stable. But while the bilayers reproduced the main ɛ₁(T) properties of the single layers qualitatively, quantitative numbers could not be explained by a simple serial connection of capacitors. Furthermore, a linear behaviour of the polarisation throughout the measured temperature range has been observed. This was found to match the behaviour predicted considering a constant electric field. Retention time is an important quantity for memory applications. Hence, the retention behaviour of VDF-TrFE copolymer thin films has been determined using dielectric non-linearities. The polarisation loss in P(VDF-TrFE) poled samples has been found to be less than 20\% if recorded over several days. The loss increases significantly if the samples have been poled with lower amplitudes, causing an unsaturated polarisation. The main loss was attributed to injected charges. Additionally, measurements of dielectric non-linearities have been proven to be a sensitive and non-destructive tool to measure the retention behaviour. Finally, a ferroelectric field effect transistor using mainly organic materials (FerrOFET) has been successfully studied. DiNaphtho[2,3-b:2',3'-f]Thieno[3,2-b]Thiophene (DNTT) has proven to be a stable, suitable organic semiconductor to build up ferroelectric memory devices. Furthermore, an oxidised aluminium bottom electrode and additional dielectric layers, i.e. parylene C, have proven to reduce the leakage current and therefore enhance the performance significantly.}, language = {en} } @phdthesis{Ganesan2010, author = {Ganesan, Lakshmi Meena}, title = {Coupling of the electrical, mechanical and optical response in polymer/liquid-crystal composites}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41572}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Micrometer-sized liquid-crystal (LC) droplets embedded in a polymer matrix may enable optical switching in the composite film through the alignment of the LC director along an external electric field. When a ferroelectric material is used as host polymer, the electric field generated by the piezoelectric effect can orient the director of the LC under an applied mechanical stress, making these materials interesting candidates for piezo-optical devices. In this work, polymer-dispersed liquid crystals (PDLCs) are prepared from poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and a nematic liquid crystal (LC). The anchoring effect is studied by means of dielectric relaxation spectroscopy. Two dispersion regions are observed in the dielectric spectra of the pure P(VDF-TrFE) film. They are related to the glass transition and to a charge-carrier relaxation, respectively. In PDLC films containing 10 and 60 wt\% LC, an additional, bias-field-dependent relaxation peak is found that can be attributed to the motion of LC molecules. Due to the anchoring effect of the LC molecules, this relaxation process is slowed down considerably, when compared with the related process in the pure LC. The electro-optical and piezo-optical behavior of PDLC films containing 10 and 60 wt\% LCs is investigated. In addition to the refractive-index mismatch between the polymer matrix and the LC molecules, the interaction between the polymer dipoles and the LC molecules at the droplet interface influences the light-scattering behavior of the PDLC films. For the first time, it was shown that the electric field generated by the application of a mechanical stress may lead to changes in the transmittance of a PDLC film. Such a piezo-optical PDLC material may be useful e.g. in sensing and visualization applications. Compared to a non-polar matrix polymer, the polar matrix polymer exhibits a strong interaction with the LC molecules at the polymer/LC interface which affects the electro-optical effect of the PDLC films and prevents a larger increase in optical transmission.}, language = {en} }