@phdthesis{Dreymann2023, author = {Dreymann, Nico}, title = {Identification and functional characterization of aptamers targeting human urokinase and NDM-1 for therapeutic and diagnostic applications}, doi = {10.25932/publishup-61291}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612919}, school = {Universit{\"a}t Potsdam}, pages = {IX, 130}, year = {2023}, abstract = {Aptamers are single-stranded DNA (ssDNA) or RNA molecules that can bind specifically and with high affinity to target molecules due to their unique three-dimensional structure. For this reason, they are often compared to antibodies and sometimes even referred to as "chemical antibodies". They are simple and inexpensive to synthesize, easy to modify, and smaller than conventional antibodies. Enzymes, especially hydrolases, are interesting targets in this context. This class of enzymes is capable of hydrolytically cleaving various macromolecules such as proteins, as well as smaller molecules such as antibiotics. Hence, they play an important role in many biological processes including diseases and their treatment. Hydrolase detection as well as the understanding of their function is therefore of great importance for diagnostics and therapy. Due to their various desirable features compared to antibodies, aptamers are being discussed as alternative agents for analytical and diagnostic use in various applications. The use of aptamers in therapy is also frequently investigated, as the binding of aptamers can have effects on the catalytic activity, protein-protein interactions, or proteolytic cascades. Aptamers are generated by an in vitro selection process. Potential aptamer candidates are selected from a pool of enriched nucleic acid sequences with affinity to the target, and their binding affinity and specificity is investigated. This is one of the most important steps in aptamer generation to obtain specific aptamers with high affinity for use in analytical and diagnostic applications. The binding properties or binding domains and their effects on enzyme functions form the basis for therapeutic applications. In this work, the binding properties of DNA aptamers against two different hydrolases were investigated. In view of their potential utility for analytical methods, aptamers against human urokinase (uPA) and New Delhi metallo-β-lactamase-1 (NDM-1) were evaluated for their binding affinity and specificity using different methods. Using the uPA aptamers, a protocol for measuring the binding kinetics of an aptamer-protein-interaction by surface plasmon resonance spectroscopy (SPR) was developed. Based on the increased expression of uPA in different types of cancer, uPA is discussed as a prognostic and diagnostic tumor marker. As uPA aptamers showed different binding sites on the protein, microtiter plate-based aptamer sandwich assay systems for the detection of uPA were developed. Because of the function of urokinase in cancer cell proliferation and metastasis, uPA is also discussed as a therapeutic target. In this regard, the different binding sites of aptamers showed different effects on uPA function. In vitro experiments demonstrated both inhibition of uPA binding to its receptor as well as the inhibition of uPA catalytic activity for different aptamers. Thus, in addition to their specificity and affinity for their targets, the utility of the aptamers for potential diagnostic and therapeutic applications was demonstrated. First, as an alternative inhibitor of human urokinase for therapeutic purposes, and second, as valuable recognition molecules for the detection of urokinase, as a prognostic and diagnostic marker for cancer, and for NDM-1 to detect resistance to carbapenem antibiotics.}, language = {en} }