@phdthesis{Mahto2022, author = {Mahto, Harendra}, title = {In vitro analysis of Early Starvation 1 (ESV1) and Like Early Starvation 1 (LESV) on starch degradation with focus on glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD)}, pages = {167}, year = {2022}, abstract = {Starch is an insoluble polyglucan, comprises of two polymers, namely, the branched α-1,4: α-1,6-D-glucan amylopectin and the almost unbranched α-1,4-D-glucan amylose. The growth of all plants is directly dependent on the accumulation of transitory starch during the daytime when photosynthesis takes place and subsequently starch degradation during the night. Starch phosphorylation takes place by starch-related dikinases called α-glucan, water dikinase (GWD), and phosphoglucan, water dikinase (PWD), and is a very important step in starch degradation. The biochemical mechanisms of phosphorylation of starch are not properly understood. Recent studies have found that there are two starch binding proteins namely, Early Starvation1 (ESV1) and Like Early Starvation1 (LESV), which play an important role in starch metabolism. It has been shown that ESV1 and LESV proteins affect the starch phosphorylation activity of GWD and PWD enzymes, which control the rate of degradation of starch granules. In this thesis, various in vitro assays were performed to identify and understand the mechanism of recombinant proteins; ESV1 and LESV on the starch degradation. The starch degradation was performed by phosphorylation enzymes, GWD and PWD separately. In various enzymatic assays, the influence of the ESV1 and LESV on the actions of GWD and PWD on the surfaces of different native starch granules were analysed. Furthermore, ESV1 and LESV have specifically shown influences on the phosphorylation activities of GWD and PWD on the starch granule surfaces in an antagonistic pattern in such a way that, the GWD mediated phosphorylation were significantly reduced while PWD mediated phosphorylation were significantly increased respectively. In another set of experiments, ISA and BAM hydrolyzing enzymes were used to alter the structure of starch, and then determine the effect of both dikinases mediated phosphorylation in the presence of ESV1 and LESV on the altered starch granules surfaces. In these results, significant decreases in both GWD and PWD mediated phosphorylation were observed in all the treatments containing either ESV1 or LESV proteins only or both ESV1 and LESV. It was also found that LESV preferentially binds to both amylose and amylopectin, while ESV1 binds to highly ordered glucans such as maltodextrins and amylopectin, which are crystalline in structure. Both ESV1 or LESV proteins either individually or in combination have shown influence on the activity of GWD and PWD phosphate incorporation into the starch granules via reduction even though at different percentages depending on the sources of starch, therefore it is difficult to distinguish the specific function between them. The biochemical studies have shown that protein-glucan interaction specifically between ESV1 or LESV or in combination with different species of starch granules has very strong surface binding, or it might be possible that both the proteins not only bind to the surface of the starch granules but also have entered deep inside the glucan structure of the starch granules. However, the results also revealed that ESV1 and LESV did not alter the autophosphorylation of the dikinases. Also, the chain length distribution pattern of the released glucan chains after treatment of starch with ISA enzyme was evaluated with respect to the degree of polymerization (DP) of the different starch granules. Capillary electrophoresis was employed to study the effect of LESV and ESV1 on the chain length distribution. In summary, this study confirms that ESV1 and LESV play an important role in organizing and regulating the starch metabolism process. In the later half, studies were performed to monitor whether the metabolism of carbohydrates and partitioning, contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum when compared to glycophyte Hordeum vulgare. Seedlings with the same size from both species were hydroponically grown at 0, 150, and 300 mM of NaCl for 3 weeks. H. marinum maintained a high relative growth rate, which was found concomitant in higher aptitude plants to maintain efficient shoot tissue hydration and integrity of membrane under salt conditions when compared to H. vulgare. Hence, our data suggested that the change in the starch storage, distribution of soluble sugar concentrations between source and sink organs, and also changes in the level of enzymes involved in the starch metabolism was significant to give insights into the importance of carbohydrate metabolism in barley species with regards to the salt tolerance. Although these results are still in their nascent state, it could be vital for other researchers to formulate future studies. The preliminary results which were studies about the carbohydrate metabolism and partitioning in salt responses in the halophyte H. marinum and the glycophyte H. vulgare revealed that salt tolerance in barley species is not due to osmotic adjustments, but due to other reasons that were not explored in the past studies. However, the activity of DPE2 in H. vulgare was not hampered by the presence of NaCl as observed. While Pho1 and Pho2, activities were highly increased in cultivated barley. These findings could be suggestive of a possible role of these enzymes in the responses of carbohydrate metabolism to salinity. When sea and cultivated barley species were compared, it was discovered that the former had more versatility in carbohydrate metabolism and distribution.}, language = {en} } @phdthesis{ALRawi2020, author = {AL-Rawi, Shadha}, title = {Biochemical studies to determine the role of Early Starvation 1 (ESV1) protein and its homologue Like-Early Starvation 1 (LESV) during starch degradation}, doi = {10.25932/publishup-48395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483956}, school = {Universit{\"a}t Potsdam}, pages = {215}, year = {2020}, abstract = {Depending on the biochemical and biotechnical approach, the aim of this work was to understand the mechanism of protein-glucan interactions in regulation and control of starch degradation. Although starch degradation starts with the phosphorylation process, the mechanisms by which this process is controlling and adjusting starch degradation are not yet fully understood. Phosphorylation is a major process performed by the two dikinases enzymes α-glucan, water dikinase (GWD) and phosphoglucan water dikinase (PWD). GWD and PWD enzymes phosphorylate the starch granule surface; thereby stimulate starch degradation by hydrolytic enzymes. Despite these important roles for GWD and PWD, so far the biochemical processes by which these enzymes are able to regulate and adjust the rate of phosphate incorporation into starch during the degradation process haven't been understood. Recently, some proteins were found associated with the starch granule. Two of these proteins are named Early Starvation Protein 1 (ESV1) and its homologue Like-Early Starvation Protein 1 (LESV). It was supposed that both are involved in the control of starch degradation, but their function has not been clearly known until now. To understand how ESV1 and LESV-glucan interactions are regulated and affect the starch breakdown, it was analyzed the influence of ESV1 and LESV proteins on the phosphorylating enzyme GWD and PWD and hydrolysing enzymes ISA, BAM, and AMY. However, the analysis determined the location of LESV and ESV1 in the chloroplast stroma of Arabidopsis. Mass spectrometry data predicted ESV1and LESV proteins as a product of the At1g42430 and At3g55760 genes with a predicted mass of ~50 kDa and ~66 kDa, respectively. The ChloroP program predicted that ESV1 lacks the chloroplast transit peptide, but it predicted the first 56 amino acids N-terminal region as a chloroplast transit peptide for LESV. Usually, the transit peptide is processed during transport of the proteins into plastids. Given that this processing is critical, two forms of each ESV1 and LESV were generated and purified, a full-length form and a truncated form that lacks the transit peptide, namely, (ESV1and tESV1) and (LESV and tLESV), respectively. Both protein forms were included in the analysis assays, but only slight differences in glucan binding and protein action between ESV1 and tESV1 were observed, while no differences in the glucan binding and effect on the GWD and PWD action were observed between LESV and tLESV. The results revealed that the presence of the N-terminal is not massively altering the action of ESV1 or LESV. Therefore, it was only used the ESV1 and tLESV forms data to explain the function of both proteins. However, the analysis of the results revealed that LESV and ESV1 proteins bind strongly at the starch granule surface. Furthermore, not all of both proteins were released after their incubation with starches after washing the granules with 2\% [w/v] SDS indicates to their binding to the deeper layers of the granule surface. Supporting of this finding comes after the binding of both proteins to starches after removing the free glucans chains from the surface by the action of ISA and BAM. Although both proteins are capable of binding to the starch structure, only LESV showed binding to amylose, while in ESV1, binding was not observed. The alteration of glucan structures at the starch granule surface is essential for the incorporation of phosphate into starch granule while the phosphorylation of starch by GWD and PWD increased after removing the free glucan chains by ISA. Furthermore, PWD showed the possibility of starch phosphorylation without prephosphorylation by GWD. Biochemical studies on protein-glucan interactions between LESV or ESV1 with different types of starch showed a potentially important mechanism of regulating and adjusting the phosphorylation process while the binding of LESV and ESV1 leads to altering the glucan structures of starches, hence, render the effect of the action of dikinases enzymes (GWD and PWD) more able to control the rate of starch degradation. Despite the presence of ESV1 which revealed an antagonistic effect on the PWD action as the PWD action was decreased without prephosphorylation by GWD and increased after prephosphorylation by GWD (Chapter 4), PWD showed a significant reduction in its action with or without prephosphorylation by GWD in the presence of ESV1 whether separately or together with LESV (Chapter 5). However, the presence of LESV and ESV1 together revealed the same effect compared to the effect of each one alone on the phosphorylation process, therefore it is difficult to distinguish the specific function between them. However, non-interactions were detected between LESV and ESV1 or between each of them with GWD and PWD or between GWD and PWD indicating the independent work for these proteins. It was also observed that the alteration of the starch structure by LESV and ESV1 plays a role in adjusting starch degradation rates not only by affecting the dikinases but also by affecting some of the hydrolysing enzymes since it was found that the presence of LESV and ESV1leads to the reduction of the action of BAM, but does not abolish it.}, language = {en} }