@phdthesis{Glatzel2013, author = {Glatzel, Stefan}, title = {Cellulose based transition metal nano-composites : structuring and development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64678}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigated. It was found that, when infusing cellulose with an aqueous iron salt solution and heating this mixture under inert atmosphere to 640 °C and above, a liquid eutectic mixture of iron and carbon with an atom ratio of approximately 1:1 forms. The eutectic droplets were monitored with in-situ TEM at the reaction temperature where they could be seen dissolving amorphous carbon and leaving behind a trail of graphitised carbon sheets and subsequently iron carbide nanoparticles. These transformations turned ordinary cellulose into a conductive and porous matrix that is well suited for catalytic applications. Despite these significant changes on the nanometre scale the shape of the matrix as a whole was retained with remarkable precision. This was exemplified by folding a sheet of cellulose paper into origami cranes and converting them via the temperature treatment in to magnetic facsimiles of those cranes. The study showed that the catalytic mechanisms derived from controlled systems and described in the literature can be transferred to synthetic concepts beyond the lab without loss of generality. Once the processes determining the transformation of cellulose into functional materials were understood, the concept could be extended to other metals and metal-combinations. Firstly, the procedure was utilised to produce different ternary iron carbides in the form of MxFeyC (M = W, Mn). None of those ternary carbides have thus far been produced in a nanoparticle form. The next part of this work encompassed combinations of iron with cobalt, nickel, palladium and copper. All of those metals were also probed alone in combination with cellulose. This produced elemental metal and metal alloy particles of low polydispersity and high stability. Both features are something that is typically not associated with high temperature syntheses and enables to connect the good size control with a scalable process. Each of the probed reactions resulted in phase pure, single crystalline, stable materials. After showing that cellulose is a good stabilising and separating agent for all the investigated types of nanoparticles, the focus of the work at hand is shifted towards probing the limits of the structuring and pattering capabilities of cellulose. Moreover possible post-processing techniques to further broaden the applicability of the materials are evaluated. This showed that, by choosing an appropriate paper, products ranging from stiff, self-sustaining monoliths to ultra-thin and very flexible cloths can be obtained after high temperature treatment. Furthermore cellulose has been demonstrated to be a very good substrate for many structuring and patterning techniques from origami folding to ink-jet printing. The thereby resulting products have been employed as electrodes, which was exemplified by electrodepositing copper onto them. Via ink-jet printing they have additionally been patterned and the resulting electrodes have also been post functionalised by electro-deposition of copper onto the graphitised (printed) parts of the samples. Lastly in a preliminary test the possibility of printing several metals simultaneously and thereby producing finely tuneable gradients from one metal to another have successfully been made. Starting from these concepts future experiments were outlined. The last chapter of this thesis concerned itself with alternative synthesis methods of the iron-carbon composite, thereby testing the robustness of the devolved reactions. By performing the synthesis with partly dissolved scrap metal and pieces of raw, dry wood, some progress for further use of the general synthesis technique were made. For example by using wood instead of processed cellulose all the established shaping techniques available for wooden objects, such as CNC milling or 3D prototyping, become accessible for the synthesis path. Also by using wood its intrinsic well defined porosity and the fact that large monoliths are obtained help expanding the prospect of using the composite. It was also demonstrated in this chapter that the resulting material can be applied for the environmentally important issue of waste water cleansing. Additionally to being made from renewable resources and by a cheap and easy one-pot synthesis, the material is recyclable, since the pollutants can be recovered by washing with ethanol. Most importantly this chapter covered experiments where the reaction was performed in a crude, home-built glass vessel, fuelled - with the help of a Fresnel lens - only by direct concentrated sunlight irradiation. This concept carries the thus far presented synthetic procedures from being common laboratory syntheses to a real world application. Based on cellulose, transition metals and simple equipment, this work enabled the easy one-pot synthesis of nano-ceramic and metal nanoparticle composites otherwise not readily accessible. Furthermore were structuring and patterning techniques and synthesis routes involving only renewable resources and environmentally benign procedures established here. Thereby it has laid the foundation for a multitude of applications and pointed towards several future projects reaching from fundamental research, to application focussed research and even and industry relevant engineering project was envisioned.}, language = {en} } @phdthesis{Sczech2005, author = {Sczech, Ronny}, title = {Haftvermittlung von Polyelektrolyten zwischen Celluloseoberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7338}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Der Adh{\"a}sionsprozess an Cellulosefasern sollte bis hin zur molekularen Ebene aufgekl{\"a}rt werden. Zuerst wurde eine definierte Celluloseoberfl{\"a}che durch Aufschleudern hergestellt und eingehend charakterisiert wurde. Die Beschaffenheit der Oberfl{\"a}che ist stark abh{\"a}ngig von der Konzentration Cellulosel{\"o}sung, die f{\"u}r das Aufschleudern benutzt wurde. F{\"u}r geringe Konzentrationen bildete sich ein Netzwerk von Cellulosefibrillen {\"u}ber die Siliziumoberfl{\"a}che aus. In einem mittleren Bereich wurden geschlossene Filme mit Dicken zwischen 1,5 und ca. 10 nm erhalten. Diese Filme wiesen eine Rauhigkeit unter 2 nm auf, was der Gr{\"o}ße eines Cellulosemolek{\"u}ls entspr{\"a}che. Mit h{\"o}heren Konzentrationen wurden die Filme dicker und auch rauer. Die molekular glatten Cellulosefilme wurden zur Untersuchung der Adh{\"a}sionseigenschaften zwischen Celluloseoberfl{\"a}chen und ihrer Modifikation durch den Einfluss von Haftvermittlern (Polyelektrolyte) eingesetzt. Daf{\"u}r wurde das Haftungsverm{\"o}gen von Celluloseperlen auf der glatten Celluloseoberfl{\"a}che analysiert. Die Adh{\"a}sion der Celluloseperlen h{\"a}ngt dabei von der Menge und von der Art des adsorbierten Polyelektrolyts ab. Geringe Polyelektrolytkonzentrationen erm{\"o}glichen wegen der teilweisen Bedeckung der Celluloseoberfl{\"a}chen eine Verst{\"a}rkung der Haftvermittlung (Adh{\"a}sion). H{\"o}here Konzentrationen an Polyelektrolyten bedecken die Celluloseoberfl{\"a}che komplett, so dass die Symmetrie der Polyelektrolytadsorption entscheidend wird. Wenn Celluloseperlen und glatte Celluloseoberfl{\"a}che gleichzeitig mit Polyelektrolyten beschichtet werden verringert sich bei hohen Konzentrationen die Adh{\"a}sion erheblich. Ein hohes Maß an Adh{\"a}sion wird dagegen erreicht, wenn nur eine der beiden gegen{\"u}berliegende Celluloseoberfl{\"a}chen separat beschichtet und dann in Kontakt mit der anderen gebracht Oberfl{\"a}che wurde. Der Einfluss einer {\"a}ußeren Kraft auf die haftenden Celluloseperlen wurde untersucht, um eine Aussage {\"u}ber die auftretenden Adh{\"a}sionskr{\"a}fte machen zu k{\"o}nnen. Daf{\"u}r wurde eine spezielle Str{\"o}mungszelle entwickelt, mit der die Bewegung von Celluloseperlen beobachtet werden kann. Je nach Ausrichtung der Str{\"o}mungszelle bewegten sich die Celluloseperlen unterschiedlich schnell. War die Str{\"o}mungszelle horizontal ausgerichtet, wirkte zus{\"a}tzlich zur Adh{\"a}sionskraft noch die Gravitation auf die Oberfl{\"a}che, so dass hier eine wesentlich langsamere Durchschnittsgeschwindigkeit ermittelt wurde als f{\"u}r die Messungen in vertikaler Ausrichtung. Die Zugabe von verschiedenen Polyelektrolyten bei den Messungen mit der Str{\"o}mungszelle hatte einen erheblichen Einfluss auf die Beweglichkeit der haftenden Celluloseperlen. Bei geringen Polyelektrolytkonzentrationen wurde das Potential der einzelnen Polyelektrolyten zur effektiven Haftvermittlung durch eine signifikant geringere Durchschnittsgeschwindigkeit der rollenden Celluloseperlen sichtbar. Aus der kritischen Anfangsgeschwindigkeit der rollenden Celluloseperlen wurde die Adh{\"a}sionsarbeit errechnet, die f{\"u}r die Bewegung n{\"o}tig ist.}, subject = {Polyelektrolyt}, language = {de} }