@phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} } @phdthesis{Mitzscherling2015, author = {Mitzscherling, Steffen}, title = {Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80833}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2015}, abstract = {This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back.}, language = {en} }