@phdthesis{Ayguel2015, author = {Ayg{\"u}l, Mesut}, title = {Pre-collisional accretion and exhumation along the southern Laurasian active margin, Central Pontides, Turkey}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416769}, school = {Universit{\"a}t Potsdam}, pages = {xxxiv, 206}, year = {2015}, abstract = {The Central Pontides is an accretionary-type orogenic area within the Alpine-Himalayan orogenic belt characterized by pre-collisional tectonic continental growth. The region comprises Mesozoic subduction-accretionary complexes and an accreted intra-oceanic arc that are sandwiched between the Laurasian active continental margin and Gondwana-derived the K{\i}r{\c{s}}ehir Block. The subduction-accretion complexes mainly consist of an Albian-Turonian accretionary wedge representing the Laurasian active continental margin. To the north, the wedge consists of slate/phyllite and metasandstone intercalation with recrystallized limestone, Na-amphibole-bearing metabasite (PT= 7-12 kbar and 400 ± 70 ºC) and tectonic slices of serpentinite representing accreted distal part of a large Lower Cretaceous submarine turbidite fan deposited on the Laurasian active continental margin that was subsequently accreted and metamorphosed. Raman spectra of carbonaceous material (RSCM) of the metapelitic rocks revealed that the metaflysch sequence consists of metamorphic packets with distinct peak metamorphic temperatures. The majority of the metapelites are low-temperature (ca. 330 °C) slates characterized by lack of differentiation of the graphite (G) and D2 defect bands. They possibly represent offscraped distal turbidites along the toe of the Albian accretionary wedge. The rest are phyllites that are characterized by slightly pronounced G band with D2 defect band occurring on its shoulder. Peak metamorphic temperatures of these phyllites are constrained to 370-385 °C. The phyllites are associated with a strip of incipient blueschist facies metabasites which are found as slivers within the offscraped distal turbidites. They possibly represent underplated continental metasediments together with oceanic crustal basalt along the basal d{\´e}collement. Tectonic emplacement of the underplated rocks into the offscraped distal turbidites was possibly achieved by out-of-sequence thrusting causing tectonic thickening and uplift of the wedge. 40Ar/39Ar phengite ages from the phyllites are ca. 100 Ma, indicating Albian subduction and regional HP metamorphism. The accreted continental metasediments are underlain by HP/LT metamorphic rocks of oceanic origin along an extensional shear zone. The oceanic metamorphic sequence mainly comprises tectonically thickened deep-seated eclogite to blueschist facies metabasites and micaschists. In the studied area, metabasites are epidote-blueschists locally with garnet (PT= 17 ± 1 kbar and 500 ± 40 °C). Lawsonite-blueschists are exposed as blocks along the extensional shear zone (PT= 14 ± 2 kbar and 370-440 °C). They are possibly associated with low shear stress regime of the initial stage of convergence. Close to the shear zone, the footwall micaschists consist of quartz, phengite, paragonite, chlorite, rutile with syn-kinematic albite porphyroblast formed by pervasive shearing during exhumation. These types of micaschists are tourmaline-bearing and their retrograde nature suggests high-fluid flux along shear zones. Peak metamorphic mineral assemblages are partly preserved in the chloritoid-micaschist farther away from the shear zone representing the zero strain domains during exhumation. Three peak metamorphic assemblages are identified and their PT conditions are constrained by pseudosections produced by Theriak-Domino and by Raman spectra of carbonaceous material: 1) garnet-chloritoid-glaucophane with lawsonite pseudomorphs (P= 17.5 ± 1 kbar, T: 390-450 °C) 2) chloritoid with glaucophane pseudomorphs (P= 16-18 kbar, T: 475 ± 40 °C) and 3) relatively high-Mg chloritoid (17\%) with jadeite pseudomorphs (P= 22-25 kbar; T: 440 ± 30 °C) in addition to phengite, paragonite, quartz, chlorite, rutile and apatite. The last mineral assemblage is interpreted as transformation of the chloritoid + glaucophane assemblage to chloritoid + jadeite paragenesis with increasing pressure. Absence of tourmaline suggests that the chloritoid-micaschist did not interact with B-rich fluids during zero strain exhumation. 40Ar/39Ar phengite age of a pervasively sheared footwall micaschist is constrained to 100.6 ± 1.3 Ma and that of a chloritoid-micaschist is constrained to 91.8 ± 1.8 Ma suggesting exhumation during on-going subduction with a southward younging of the basal accretion and the regional metamorphism. To the south, accretionary wedge consists of blueschist and greenschist facies metabasite, marble and volcanogenic metasediment intercalation. 40Ar/39Ar phengite dating reveals that this part of the wedge is of Middle Jurassic age partly overprinted during the Albian. Emplacement of the Middle Jurassic subduction-accretion complexes is possibly associated with obliquity of the Albian convergence. Peak metamorphic assemblages and PT estimates of the deep-seated oceanic metamorphic sequence suggest tectonic stacking within wedge with different depths of burial. Coupling and exhumation of the distinct metamorphic slices are controlled by decompression of the wedge possibly along a retreating slab. Structurally, decompression of the wedge is evident by an extensional shear zone and the footwall micaschists with syn-kinematic albite porphyroblasts. Post-kinematic garnets with increasing grossular content and pseudomorphing minerals within the chloritoid-micaschists also support decompression model without an extra heating. Thickening of subduction-accretionary complexes is attributed to i) significant amount of clastic sediment supply from the overriding continental domain and ii) deep level basal underplating by propagation of the d{\´e}collement along a retreating slab. Underplating by basal d{\´e}collement propagation and subsequent exhumation of the deep-seated subduction-accretion complexes are connected and controlled by slab rollback creating a necessary space for progressive basal accretion along the plate interface and extension of the wedge above for exhumation of the tectonically thickened metamorphic sequences. This might be the most common mechanism of the tectonic thickening and subsequent exhumation of deep-seated HP/LT subduction-accretion complexes. To the south, the Albian-Turonian accretionary wedge structurally overlies a low-grade volcanic arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed north of the İzmir-Ankara-Erzincan suture (İAES), separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metavolcanic rocks are stratigraphically overlain by recrystallized micritic limestone with rare volcanogenic metaclastic rocks. Two groups can be identified based on trace and rare earth element characteristics. The first group consists of basaltic andesite/andesite (BA1) and rhyolite with abundant cognate gabbroic xenoliths. It is characterized by relative enrichment of LREE with respect to HREE. The rocks are enriched in fluid mobile LILE, and strongly depleted in Ti and P reflecting fractionation of Fe-Ti oxides and apatite, which are found in the mafic cognate xenoliths. Abundant cognate gabbroic xenoliths and identical trace and rare earth elements compositions suggest that rhyolites and basaltic andesites/andesites (BA1) are cogenetic and felsic rocks were derived from a common mafic parental magma by fractional crystallization and accumulation processes. The second group consists only of basaltic andesites (BA2) with flat REE pattern resembling island arc tholeiites. Although enriched in LILE, this group is not depleted in Ti or P. Geochemistry of the metavolcanic rocks indicates supra-subduction volcanism evidenced by depletion of HFSE and enrichment of LILE. The arc sequence is sandwiched between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic m{\´e}lange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the K{\"o}sdağ Arc was intra-oceanic. This is in accordance with basaltic andesites (BA2) with island arc tholeiite REE pattern. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. Low-grade regional metamorphism of the intra-oceanic arc sequence is constrained 69.9 ± 0.4 Ma by 40Ar/39Ar dating on metamorphic muscovite from a metarhyolite indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. The youngest 40Ar/39Ar phengite age from the overlying subduction-accretion complexes is 92 Ma confirming southward younging of an accretionary-type orogenic belt. Hence, the arc sequence represents an intra-oceanic paleo-arc that formed above the sinking Tethyan slab and finally accreted to Laurasian active continental margin. Abrupt non-collisional termination of arc volcanism was possibly associated with southward migration of the arc volcanism similar to the Izu-Bonin-Mariana arc system. The intra-oceanic K{\"o}sdağ Arc is coeval with the obducted supra-subduction ophiolites in NW Turkey suggesting that it represents part of the presumed but missing incipient intra-oceanic arc associated with the generation of the regional supra-subduction ophiolites. Remnants of a Late Cretaceous intra-oceanic paleo-arc and supra-subduction ophiolites can be traced eastward within the Alp-Himalayan orogenic belt. This reveals that Late Cretaceous intra-oceanic subduction occurred as connected event above the sinking Tethyan slab. It resulted as arc accretion to Laurasian active margin and supra-subduction ophiolite obduction on Gondwana-derived terranes.}, language = {en} } @phdthesis{Luft2015, author = {Luft, Laura Charlotte}, title = {Bridging the gap between science and nature conservation practice}, school = {Universit{\"a}t Potsdam}, pages = {173}, year = {2015}, language = {en} } @phdthesis{Mielke2015, author = {Mielke, Christian}, title = {Multi- and Hyperspectral Spaceborne Remote Sensing for Mine Waste and Mineral Deposit Characterization, new Applications to the EnMAP and Sentinel-2 Missions}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2015}, language = {en} } @phdthesis{Obu2015, author = {Obu, Jaroslav}, title = {Effect of mass wasting on soil organic carbon storage and coastal erosion in permafrost environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90599}, school = {Universit{\"a}t Potsdam}, pages = {iii, 93}, year = {2015}, abstract = {Accelerated permafrost thaw under the warming Arctic climate can have a significant impact on Arctic landscapes. Areas underlain by permafrost store high amounts of soil organic carbon (SOC). Permafrost disturbances may contribute to increased release of carbon dioxide and methane to the atmosphere. Coastal erosion, amplified through a decrease in Arctic sea-ice extent, may also mobilise SOC from permafrost. Large expanses of permafrost affected land are characterised by intense mass-wasting processes such as solifluction, active-layer detachments and retrogressive thaw slumping. Our aim is to assess the influence of mass wasting on SOC storage and coastal erosion. We studied SOC storage on Herschel Island by analysing active-layer and permafrost samples, and compared non-disturbed sites to those characterised by mass wasting. Mass-wasting sites showed decreased SOC storage and material compaction, whereas sites characterised by material accumulation showed increased storage. The SOC storage on Herschel Island is also significantly correlated to catenary position and other slope characteristics. We estimated SOC storage on Herschel Island to be 34.8 kg C m-2. This is comparable to similar environments in northwest Canada and Alaska. Coastal erosion was analysed using high resolution digital elevation models (DEMs). Two LIDAR scanning of the Yukon Coast were done in 2012 and 2013. Two DEMs with 1 m horizontal resolution were generated and used to analyse elevation changes along the coast. The results indicate considerable spatial variability in short-term coastline erosion and progradation. The high variability was related to the presence of mass-wasting processes. Erosion and deposition extremes were recorded where the retrogressive thaw slump (RTS) activity was most pronounced. Released sediment can be transported by longshore drift and affects not only the coastal processes in situ but also along adjacent coasts. We also calculated volumetric coastal erosion for Herschel Island by comparing a stereo-photogrammetrically derived DEM from 2004 with LIDAR DEMs. We compared this volumetric erosion to planimetric erosion, which was based on coastlines digitised from satellite imagery. We found a complex relationship between planimetric and volumetric coastal erosion, which we attribute to frequent occurrence of mass-wasting processes along the coasts. Our results suggest that volumetric erosion corresponds better with environmental forcing and is more suitable for the estimation of organic carbon fluxes than planimetric erosion. Mass wasting can decrease SOC storage by several mechanisms. Increased aeration following disturbance may increase microbial activity, which accelerates organic matter decomposition. New hydrological conditions that follow the mass wasting event can cause leaching of freshly exposed material. Organic rich material can also be directly removed into the sea or into a lake. On the other hand the accumulation of mobilised material can result in increased SOC storage. Mass-wasting related accumulations of mobilised material can significantly impact coastal erosion in situ or along the adjacent coast by longshore drift. Therefore, the coastline movement observations cannot completely resolve the actual sediment loss due to these temporary accumulations. The predicted increase of mass-wasting activity in the course of Arctic warming may increase SOC mobilisation and coastal erosion induced carbon fluxes.}, language = {en} } @phdthesis{Aich2015, author = {Aich, Valentin}, title = {Floods in the Niger River Basin in the face of global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91577}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 275}, year = {2015}, abstract = {In the last decade, the number and dimensions of catastrophic flooding events in the Niger River Basin (NRB) have markedly increased. Despite the devastating impact of the floods on the population and the mainly agriculturally based economy of the riverine nations, awareness of the hazards in policy and science is still low. The urgency of this topic and the existing research deficits are the motivation for the present dissertation. The thesis is an initial detailed assessment of the increasing flood risk in the NRB. The research strategy is based on four questions regarding (1) features of the change in flood risk, (2) reasons for the change in the flood regime, (3) expected changes of the flood regime given climate and land use changes, and (4) recommendations from previous analysis for reducing the flood risk in the NRB. The question examining the features of change in the flood regime is answered by means of statistical analysis. Trend, correlation, changepoint, and variance analyses show that, in addition to the factors exposure and vulnerability, the hazard itself has also increased significantly in the NRB, in accordance with the decadal climate pattern of West Africa. The northern arid and semi-arid parts of the NRB are those most affected by the changes. As potential reasons for the increase in flood magnitudes, climate and land use changes are attributed by means of a hypothesis-testing framework. Two different approaches, based on either data analysis or simulation, lead to similar results, showing that the influence of climatic changes is generally larger compared to that of land use changes. Only in the dry areas of the NRB is the influence of land use changes comparable to that of climatic alterations. Future changes of the flood regime are evaluated using modelling results. First ensembles of statistically and dynamically downscaled climate models based on different emission scenarios are analyzed. The models agree with a distinct increase in temperature. The precipitation signal, however, is not coherent. The climate scenarios are used to drive an eco-hydrological model. The influence of climatic changes on the flood regime is uncertain due to the unclear precipitation signal. Still, in general, higher flood peaks are expected. In a next step, effects of land use changes are integrated into the model. Different scenarios show that regreening might help to reduce flood peaks. In contrast, an expansion of agriculture might enhance the flood peaks in the NRB. Similarly to the analysis of observed changes in the flood regime, the impacts of climate- and land use changes for the future scenarios are also most severe in the dry areas of the NRB. In order to answer the final research question, the results of the above analysis are integrated into a range of recommendations for science and policy on how to reduce flood risk in the NRB. The main recommendations include a stronger consideration of the enormous natural climate variability in the NRB and a focus on so called "no-regret" adaptation strategies which account for high uncertainty, as well as a stronger consideration of regional differences. Regarding the prevention and mitigation of catastrophic flooding, the most vulnerable and sensitive areas in the basin, the arid and semi-arid Sahelian and Sudano-Sahelian regions, should be prioritized. Eventually, an active, science-based and science-guided flood policy is recommended. The enormous population growth in the NRB in connection with the expected deterioration of environmental and climatic conditions is likely to enhance the region´s vulnerability to flooding. A smart and sustainable flood policy can help mitigate these negative impacts of flooding on the development of riverine societies in West Africa.}, language = {en} } @phdthesis{Schroeder2015, author = {Schr{\"o}der, Sarah}, title = {Modelling surface evolution coupled with tectonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90385}, school = {Universit{\"a}t Potsdam}, pages = {viii, 129}, year = {2015}, abstract = {This study presents the development of 1D and 2D Surface Evolution Codes (SECs) and their coupling to any lithospheric-scale (thermo-)mechanical code with a quadrilateral structured surface mesh. Both SECs involve diffusion as approach for hillslope processes and the stream power law to reflect riverbed incision. The 1D SEC settles sediment that was produced by fluvial incision in the appropriate minimum, while the supply-limited 2D SEC DANSER uses a fast filling algorithm to model sedimantation. It is based on a cellular automaton. A slope-dependent factor in the sediment flux extends the diffusion equation to nonlinear diffusion. The discharge accumulation is achieved with the D8-algorithm and an improved drainage accumulation routine. Lateral incision enhances the incision's modelling. Following empirical laws, it incises channels of several cells width. The coupling method enables different temporal and spatial resolutions of the SEC and the thermo-mechanical code. It transfers vertical as well as horizontal displacements to the surface model. A weighted smoothing of the 3D surface displacements is implemented. The smoothed displacement vectors transmit the deformation by bilinear interpolation to the surface model. These interpolation methods ensure mass conservation in both directions and prevent the two surfaces from drifting apart. The presented applications refer to the evolution of the Pamir orogen. A calibration of DANSER's parameters with geomorphological data and a DEM as initial topography highlights the advantage of lateral incision. Preserving the channel width and reflecting incision peaks in narrow channels, this closes the huge gap between current orogen-scale incision models and observed topographies. River capturing models in a system of fault-bounded block rotations reaffirm the importance of the lateral incision routine for capturing events with channel initiation. The models show a low probability of river capturings with large deflection angles. While the probability of river capturing is directly depending on the uplift rate, the erodibility inside of a dip-slip fault speeds up headward erosion along the fault: The model's capturing speed increases within a fault. Coupling DANSER with the thermo-mechanical code SLIM 3D emphasizes the versatility of the SEC. While DANSER has minor influence on the lithospheric evolution of an indenter model, the brittle surface deformation is strongly affected by its sedimentation, widening a basin in between two forming orogens and also the southern part of the southern orogen to south, east and west.}, language = {en} } @phdthesis{Rach2015, author = {Rach, Oliver}, title = {Qualitative and quantitative estimations of hydrological changes in western Europe during abrupt climate shifts using lipid biomarker derived stable hydrogen isotope records}, school = {Universit{\"a}t Potsdam}, pages = {217}, year = {2015}, language = {en} } @phdthesis{Helpa2015, author = {Helpa, Vanessa}, title = {Interplay between mineral reaction and deformation via structural defects}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90332}, school = {Universit{\"a}t Potsdam}, pages = {x, 104}, year = {2015}, abstract = {This thesis contains three experimental studies addressing the interplay between deformation and the mineral reaction between natural calcite and magnesite. The solid-solid mineral reaction between the two carbonates causes the formation of a magnesio-calcite precursor layer and a dolomite reaction rim in every experiment at isostatic annealing and deformation conditions. CHAPTER 1 briefly introduces general aspects concerning mineral reactions in nature and diffusion pathways for mass transport. Moreover, results of previous laboratory studies on the influence of deformation on mineral reactions are summarized. In addition, the main goals of this study are pointed out. In CHAPTER 2, the reaction between calcite and magnesite single crystals is examined at isostatic annealing conditions. Time series performed at a fixed temperature revealed a diffusion-controlled dolomite rim growth. Two microstructural domains could be identified characterized by palisade-shaped dolomite grains growing into the magnesite and granular dolomite growing towards calcite. A model was provided for the dolomite rim growth based on the counter-diffusion of CaO and MgO. All reaction products exhibited a characteristic crystallographic relationship with respect to the calcite reactant. Moreover, kinetic parameters of the mineral reaction were determined out of a temperature series at a fixed time. The main goal of the isostatic test series was to gain information about the microstructure evolution, kinetic parameters, chemical composition and texture development of the reaction products. The results were used as a reference to quantify the influence of deformation on the mineral reaction. CHAPTER 3 deals with the influence of non-isostatic deformation on dolomite and magnesio-calcite layer production between calcite and magnesite single crystals. Deformation was achieved by triaxial compression and by torsion. Triaxial compression up to 38 MPa axial stress at a fixed time showed no significant influence of stress and strain on dolomite formation. Time series conducted at a fixed stress yield no change in growth rates for dolomite and magnesio-calcite at low strains. Slightly larger magnesio-calcite growth rates were observed at strains above >0.1. High strains at similar stresses were caused by the activation of additional glide systems in the calcite single crystal and more mobile dislocations in the magnesio-calcite grains, providing fast diffusion pathways. In torsion experiments a gradual decrease in dolomite and magnesio-calcite layer thickness was observed at a critical shear strain. During deformation, crystallographic orientations of reaction products rearranged with respect to the external framework. A direct effect of the mineral reaction on deformation could not be recognized due to the relatively small reaction product widths. In CHAPTER 4, the influence of starting material microfabrics and the presence of water on the reaction kinetics was evaluated. In these experimental series polycrystalline material was in contact with single crystals or two polycrystalline materials were used as reactants. Isostatic annealing resulted in different dolomite and magnesio-calcite layer thicknesses, depending on starting material microfabrics. The reaction progress at the magnesite interface was faster with smaller magnesite grain size, because grain boundaries provided fast pathways for diffusion and multiple nucleation sites for dolomite formation. Deformation by triaxial compression and torsion yield lower dolomite rim thicknesses compared to annealed samples for the same time. This was caused by grain coarsening of polycrystalline magnesite during deformation. In contrast, magnesio-calcite layers tended to be larger during deformation, which triggered enhanced diffusion along grain boundaries. The presence of excess water had no significant influence on the reaction kinetics, at least if the reactants were single crystals. In CHAPTER 5 general conclusions about the interplay between deformation and the mineral reaction in the carbonate system are presented. Finally, CHAPTER 6 highlights possible future work in the carbonate system based on the results of this study.}, language = {en} } @phdthesis{Boesche2015, author = {B{\"o}sche, Nina Kristine}, title = {Detection of rare earth elements and rare earth oxides with hyperspectral spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85363}, school = {Universit{\"a}t Potsdam}, pages = {147}, year = {2015}, abstract = {The continuously increasing demand for rare earth elements in technical components of modern technologies, brings the detection of new deposits closer into the focus of global exploration. One promising method to globally map important deposits might be remote sensing, since it has been used for a wide range of mineral mapping in the past. This doctoral thesis investigates the capacity of hyperspectral remote sensing for the detection of rare earth element deposits. The definition and the realization of a fundamental database on the spectral characteristics of rare earth oxides, rare earth metals and rare earth element bearing materials formed the basis of this thesis. To investigate these characteristics in the field, hyperspectral images of four outcrops in Fen Complex, Norway, were collected in the near-field. A new methodology (named REEMAP) was developed to delineate rare earth element enriched zones. The main steps of REEMAP are: 1) multitemporal weighted averaging of multiple images covering the sample area; 2) sharpening the rare earth related signals using a Gaussian high pass deconvolution technique that is calibrated on the standard deviation of a Gaussian-bell shaped curve that represents by the full width of half maxima of the target absorption band; 3) mathematical modeling of the target absorption band and highlighting of rare earth elements. REEMAP was further adapted to different hyperspectral sensors (EO-1 Hyperion and EnMAP) and a new test site (Lofdal, Namibia). Additionally, the hyperspectral signatures of associated minerals were investigated to serve as proxy for the host rocks. Finally, the capacity and limitations of spectroscopic rare earth element detection approaches in general and of the REEMAP approach specifically were investigated and discussed. One result of this doctoral thesis is that eight rare earth oxides show robust absorption bands and, therefore, can be used for hyperspectral detection methods. Additionally, the spectral signatures of iron oxides, iron-bearing sulfates, calcite and kaolinite can be used to detect metasomatic alteration zones and highlight the ore zone. One of the key results of this doctoral work is the developed REEMAP approach, which can be applied from near-field to space. The REEMAP approach enables rare earth element mapping especially for noisy images. Limiting factors are a low signal to noise ratio, a reduced spectral resolution, overlaying materials, atmospheric absorption residuals and non-optimal illumination conditions. Another key result of this doctoral thesis is the finding that the future hyperspectral EnMAP satellite (with its currently published specifications, June 2015) will be theoretically capable to detect absorption bands of erbium, dysprosium, holmium, neodymium and europium, thulium and samarium. This thesis presents a new methodology REEMAP that enables a spatially wide and rapid hyperspectral detection of rare earth elements in order to meet the demand for fast, extensive and efficient rare earth exploration (from near-field to space).}, language = {en} } @phdthesis{Priegnitz2015, author = {Priegnitz, Mike}, title = {Development of geophysical methods to characterize methane hydrate reservoirs on a laboratory scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89321}, school = {Universit{\"a}t Potsdam}, pages = {X, 99}, year = {2015}, abstract = {Gashydrate sind kristalline Feststoffe bestehend aus Wasser und Gasmolek{\"u}len. Sie sind stabil bei erh{\"o}hten Dr{\"u}cken und niedrigen Temperaturen. Nat{\"u}rliche Hydratvorkommen treten daher an Kontinentalh{\"a}ngen, in Permafrostb{\"o}den und in tiefen Seen sowie Binnenmeeren auf. Bei der Hydratbildung orientieren sich die Wassermolek{\"u}le neu und bilden sogenannte K{\"a}figstrukturen, in die Gas eingelagert werden kann. Aufgrund des hohen Drucks bei der Hydratbildung k{\"o}nnen große Mengen an Gas in die Hydratstruktur eingebaut werden. Das Volumenverh{\"a}ltnis von Wasser zu Gas kann dabei bis zu 1:172 bei 0°C und Atmosph{\"a}rendruck betragen. Nat{\"u}rliche Gashydrate enthalten haupts{\"a}chlich Methan. Da Methan sowohl ein Treibhausgas als auch ein Brenngas ist, stellen Gashydrate gleichermaßen eine potentielle Energieressource sowie eine m{\"o}gliche Quelle f{\"u}r Treibhausgase dar. Diese Arbeit untersucht die physikalischen Eigenschaften von Methanhydrat ges{\"a}ttigten Sedimentproben im Labormaßstab. Dazu wurde ein großer Reservoirsimulator (LARS) mit einer eigens entwickelten elektrischen Widerstandstomographie ausger{\"u}stet, die das erste Mal an hydratges{\"a}ttigten Sedimentproben unter kontrollierten Temperatur-, Druck-, und Hydrats{\"a}ttigungsbedingungen im Labormaßstab angewendet wurde. {\"U}blicherweise ist der Porenraum von (marinen) Sedimenten mit elektrisch gut leitendem Salzwasser gef{\"u}llt. Da Hydrate einen elektrischen Isolator darstellen, ergeben sich große Kontraste hinsichtlich der elektrischen Eigenschaften im Porenraum w{\"a}hrend der Hydratbildung und -zersetzung. Durch wiederholte Messungen w{\"a}hrend der Hydraterzeugung ist es m{\"o}glich die r{\"a}umliche Widerstandsverteilung in LARS aufzuzeichnen. Diese Daten bilden in der Folge die Grundlage f{\"u}r eine neue Auswerteroutine, welche die r{\"a}umliche Widerstandsverteilung in die r{\"a}umliche Verteilung der Hydrats{\"a}ttigung {\"u}berf{\"u}hrt. Dadurch ist es m{\"o}glich, die sich {\"a}ndernde Hydrats{\"a}ttigung sowohl r{\"a}umlich als auch zeitlich hoch aufgel{\"o}st w{\"a}hrend der gesamten Hydraterzeugungsphase zu verfolgen. Diese Arbeit zeigt, dass die entwickelte Widerstandstomographie eine gute Datenqualit{\"a}t aufwies und selbst geringe Hydrats{\"a}ttigungen innerhalb der Sedimentprobe detektiert werden konnten. Bei der Umrechnung der Widerstandsverteilung in lokale Hydrat-S{\"a}ttigungswerte wurden die besten Ergebnisse mit dem Archie-var-phi Ansatz erzielt, der die zunehmende Hydratphase dem Sedimentger{\"u}st zuschreibt, was einer Abnahme der Porosit{\"a}t gleichkommt. Die Widerstandsmessungen zeigten weiterhin, dass die schnelle Hydraterzeugung im Labor zur Ausbildung von kleinen Hydratkristallen f{\"u}hrte, die dazu neigten, zu rekristalliesieren. Es wurden weiterhin Hydrat-Abbauversuche durchgef{\"u}hrt, bei denen die Hydratphase {\"u}ber Druckerniedrigung in Anlehnung an den 2007/2008 Mallik Feldtest zersetzt wurde. Dabei konnte beobachtet werden, dass die Muster der Gas- undWasserflussraten im Labor zum Teil gut nachgebildet werden konnten, jedoch auch aufbaubedingte Abweichungen auftraten. In zwei weiteren Langzeitversuchen wurde die Realisierbarkeit und das Verhalten bei CO2-CH4-Hydrat Austauschversuchen in LARS untersucht. Das tomographische Messsystem wurde dabei genutzt um w{\"a}hrend der CH4 Hydrat Aufbauphase die Hydratverteilung innerhalb der Sedimentprobe zu {\"u}berwachen. Im Zuge der anschließenden CO2-Injektion konnte mithilfe der Widerstandstomographie die sich ausbreitende CO2-Front {\"u}berwacht und der Zeitpunkt des CO2 Durchbruchs identifiziert werden.}, language = {en} }