@article{Rarog2013, author = {Rarog, Alexey}, title = {Strafrechtliche Verantwortlichkeit von Amtstr{\"a}gern im deutschen und russischen Recht}, series = {Schriften zum deutschen und russischen Strafrecht}, journal = {Schriften zum deutschen und russischen Strafrecht}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2191-0898}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67452}, pages = {13 -- 16}, year = {2013}, language = {de} } @article{BerryKusterer2013, author = {Berry, Carol and Kusterer, Peter}, title = {Using Teachers' TryScience to support educators and improve teaching}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64665}, pages = {161 -- 162}, year = {2013}, abstract = {The challenge is providing teachers with the resources they need to strengthen their instructions and better prepare students for the jobs of the 21st Century. Technology can help meet the challenge. Teachers' Tryscience is a noncommercial offer, developed by the New York Hall of Science, TeachEngineering, the National Board for Professional Teaching Standards and IBM Citizenship to provide teachers with such resources. The workshop provides deeper insight into this tool and discussion of how to support teaching of informatics in schools.}, language = {en} } @article{SentanceHodges2013, author = {Sentance, Sue and Hodges, Steve}, title = {.NET Gadgeteer Workshop}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64654}, pages = {159}, year = {2013}, language = {en} } @article{Ragonis2013, author = {Ragonis, Noa}, title = {Problem-solving strategies must be taught implicitly}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64645}, pages = {155 -- 157}, year = {2013}, abstract = {Problem solving is one of the central activities performed by computer scientists as well as by computer science learners. Whereas the teaching of algorithms and programming languages is usually well structured within a curriculum, the development of learners' problem-solving skills is largely implicit and less structured. Students at all levels often face difficulties in problem analysis and solution construction. The basic assumption of the workshop is that without some formal instruction on effective strategies, even the most inventive learner may resort to unproductive trial-and-error problemsolving processes. Hence, it is important to teach problem-solving strategies and to guide teachers on how to teach their pupils this cognitive tool. Computer science educators should be aware of the difficulties and acquire appropriate pedagogical tools to help their learners gain and experience problem-solving skills.}, language = {en} } @article{Benacka2013, author = {Benacka, Jan}, title = {BubbleSort, SelectSort and InsertSort in Excel \& Delphi}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64636}, pages = {153 -- 154}, year = {2013}, abstract = {A method is presented of acquiring the principles of three sorting algorithms through developing interactive applications in Excel.}, language = {en} } @article{PlanteuStandlGrossmannetal.2013, author = {Planteu, Lukas and Standl, Bernhard and Grossmann, Wilfried and Neuwirth, Erich}, title = {Integrating school practice in Austrian teacher education}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64628}, pages = {151 -- 152}, year = {2013}, abstract = {We present a concept of better integration of practical teaching in student teacher education in Computer Science. As an introduction to the workshop different possible scenarios are discussed on the basis of examples. Afterwards workshop participants will have the opportunity to discuss the application of the aconcepts in other settings.}, language = {en} } @article{BellettiniLonatiMalchiodietal.2013, author = {Bellettini, Carlo and Lonati, Violetta and Malchiodi, Dario and Monga, Mattia and Morpurgo, Anna and Torelli, Mauro}, title = {What you see is what you have in mind}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64612}, pages = {139 -- 147}, year = {2013}, abstract = {In this paper we report on our experiments in teaching computer science concepts with a mix of tangible and abstract object manipulations. The goal we set ourselves was to let pupils discover the challenges one has to meet to automatically manipulate formatted text. We worked with a group of 25 secondary school pupils (9-10th grade), and they were actually able to "invent" the concept of mark-up language. From this experiment we distilled a set of activities which will be replicated in other classes (6th grade) under the guidance of maths teachers.}, language = {en} } @article{Weise2013, author = {Weise, Martin}, title = {A model for teaching informatics to German secondary school students in English-language bilingual education}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64568}, pages = {127 -- 137}, year = {2013}, abstract = {Informatics as a school subject has been virtually absent from bilingual education programs in German secondary schools. Most bilingual programs in German secondary education started out by focusing on subjects from the field of social sciences. Teachers and bilingual curriculum experts alike have been regarding those as the most suitable subjects for bilingual instruction - largely due to the intercultural perspective that a bilingual approach provides. And though one cannot deny the gain that ensues from an intercultural perspective on subjects such as history or geography, this benefit is certainly not limited to social science subjects. In consequence, bilingual curriculum designers have already begun to include other subjects such as physics or chemistry in bilingual school programs. It only seems a small step to extend this to informatics. This paper will start out by addressing potential benefits of adding informatics to the range of subjects taught as part of English-language bilingual programs in German secondary education. In a second step it will sketch out a methodological (= didactical) model for teaching informatics to German learners through English. It will then provide two items of hands-on and tested teaching material in accordance with this model. The discussion will conclude with a brief outlook on the chances and prerequisites of firmly establishing informatics as part of bilingual school curricula in Germany.}, language = {en} } @article{Grgurina2013, author = {Grgurina, Nataša}, title = {Computational thinking in Dutch secondary education}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64556}, pages = {119 -- 123}, year = {2013}, abstract = {We shall examine the Pedagogical Content Knowledge (PCK) of Computer Science (CS) teachers concerning students' Computational Thinking (CT) problem solving skills within the context of a CS course in Dutch secondary education and thus obtain an operational definition of CT and ascertain appropriate teaching methodology. Next we shall develop an instrument to assess students' CT and design a curriculum intervention geared toward teaching and improving students' CT problem solving skills and competences. As a result, this research will yield an operational definition of CT, knowledge about CT PCK, a CT assessment instrument and teaching materials and accompanying teacher instructions. It shall contribute to CS teacher education, development of CT education and to education in other (STEM) subjects where CT plays a supporting role, both nationally and internationally.}, language = {en} } @article{ReffayMiledOrtizetal.2013, author = {Reffay, Christophe and Miled, Mahdi and Ortiz, Pascal and F{\´e}vrier, Loic}, title = {An epistemic hypermedia to learn python as a resource for an introductory course for algorithmic in France}, series = {Commentarii informaticae didacticae : (CID)}, journal = {Commentarii informaticae didacticae : (CID)}, number = {6}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1868-0844}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64545}, pages = {111 -- 118}, year = {2013}, abstract = {We launched an original large-scale experiment concerning informatics learning in French high schools. We are using the France-IOI platform to federate resources and share observation for research. The first step is the implementation of an adaptive hypermedia based on very fine grain epistemic modules for Python programming learning. We define the necessary traces to be built in order to study the trajectories of navigation the pupils will draw across this hypermedia. It may be browsed by pupils either as a course support, or an extra help to solve the list of exercises (mainly for algorithmics discovery). By leaving the locus of control to the learner, we want to observe the different trajectories they finally draw through our system. These trajectories may be abstracted and interpreted as strategies and then compared for their relative efficiency. Our hypothesis is that learners have different profiles and may use the appropriate strategy accordingly. This paper presents the research questions, the method and the expected results.}, language = {en} }