@article{SchubertDolfenFrischetal.2012, author = {Schubert, Marcel and Dolfen, Daniel and Frisch, Johannes and Roland, Steffen and Steyrleuthner, Robert and Stiller, Burkhard and Chen, Zhihua and Scherf, Ullrich and Koch, Norbert and Facchetti, Antonio and Neher, Dieter}, title = {Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers}, series = {dvanced energy materials}, volume = {2}, journal = {dvanced energy materials}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201100601}, pages = {369 -- 380}, year = {2012}, abstract = {The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4\%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70\%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction.}, language = {en} } @article{SteyrleuthnerSchubertHowardetal.2012, author = {Steyrleuthner, Robert and Schubert, Marcel and Howard, Ian and Klaum{\"u}nzer, Bastian and Schilling, Kristian and Chen, Zhihua and Saalfrank, Peter and Laquai, Frederic and Facchetti, Antonio and Neher, Dieter}, title = {Aggregation in a high-mobility n-type low-bandgap copolymer with implications on semicrystalline morphology}, series = {Journal of the American Chemical Society}, volume = {134}, journal = {Journal of the American Chemical Society}, number = {44}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja306844f}, pages = {18303 -- 18317}, year = {2012}, abstract = {We explore the photophysics of P(NDI2OD-T2), a high-mobility and air-stable n-type donor/acceptor polymer. Detailed steady-state UV-vis and photoluminescence (PL) measurements on solutions of P(NDI2OD-T2) reveal distinct signatures of aggregation. By performing quantum chemical calculations, we can assign these spectral features to unaggregated and stacked polymer chains. NMR measurements independently confirm the aggregation phenomena of P(NDI2OD-T2) in solution. The detailed analysis of the optical spectra shows that aggregation is a two-step process with different types of aggregates, which we confirm by time-dependent PL measurements. Analytical ultracentrifugation measurements suggest that aggregation takes place within the single polymer chain upon coiling. By transferring these results to thin P(NDI2OD-T2) films, we can conclude that film formation is mainly governed by the chain collapse, leading in general to a high aggregate content of similar to 45\%. This process also inhibits the formation of amorphous and disordered P(NDI2OD-T2) films.}, language = {en} } @article{SchubertSteyrleuthnerBangeetal.2009, author = {Schubert, Marcel and Steyrleuthner, Robert and Bange, Sebastian and Sellinger, Alan and Neher, Dieter}, title = {Charge transport and recombination in bulk heterojunction solar cells containing a dicyanoimidazole-based molecular acceptor}, issn = {1862-6300}, doi = {10.1002/pssa.200925312}, year = {2009}, abstract = {Carrier transport and recombination have been studied in single component layers and blends of the soluble PPV- derivative poly[2,5-dimethoxy-1,4-phenylenevinylene-2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylenevinylene] (M3EH-PPV) and the small molecule acceptor 4,7-bis(2-(1-hexyl-4,5-dicyanoimidazole-2-yl)vinyl) benzo[c][1,2,5]-thiadiazole (HV-BT). Measurements on single carrier devices show significantly smaller electron mobility in the blend compared to the pure HV- BT layer, which is suggestive of the formation of isolated clusters of the acceptor in a continuous polymer matrix. The significant change in fill factor (FF) with increasing illumination intensity is consistently explained by a model taking into account bimolecular recombination and space charge effects. The decay of the carrier density after photoexcitation has been studied by performing photo-CELIV measurements on pure and blend layers. It is found that the decay at long delay times follows a power-law dependence, which is, however, not consistent with a Langevin-type bimolecular recombination of free charges. A good description of the data is obtained by assuming trimolecular recombination to govern the charge carrier dynamics in these systems.}, language = {en} } @article{SteyrleuthnerBangeNeher2009, author = {Steyrleuthner, Robert and Bange, Sebastian and Neher, Dieter}, title = {Reliable electron-only devices and electron transport in n-type polymers}, issn = {0021-8979}, doi = {10.1063/1.3086307}, year = {2009}, abstract = {Current-voltage analysis of single-carrier transport is a popular method for the determination of charge carrier mobilities in organic semiconductors. Although in widespread use for the analysis of hole transport, only a few reports can be found where the method was applied to electron transport. Here, we summarize the experimental difficulties related to the metal electrode leakage currents and nonlinear differential resistance (NDR) effects and explain their origin. We present a modified preparation technique for the metal electrodes and show that it significantly increases the reliability of such measurements. It allows to produce test devices with low leakage currents and without NDR even for thin organic layers. Metal oxides were often discussed as a possible cause of NDR. Our measurements on forcibly oxidized metal electrodes demonstrate that oxide layers are not exclusively responsible for NDR effects. We present electron transport data for two electron-conducting polymers often applied in all-polymer solar cells for a large variety of layer thicknesses and temperatures. The results can be explained by established exponential trapping models.}, language = {en} } @article{SteyrleuthnerSchubertJaiseretal.2010, author = {Steyrleuthner, Robert and Schubert, Marcel and Jaiser, Frank and Blakesley, James C. and Chen, Zhihua and Facchetti, Antonio and Neher, Dieter}, title = {Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer}, issn = {0935-9648}, doi = {10.1002/adma.201000232}, year = {2010}, abstract = {Bulk electron transport in a high mobility n-type polymer is studied by time-of-flight photocurrent measurements and electron-only devices. Bulk electron mobilities of similar to 5 x 10(-3) cm(2)/Vs are obtained. The analysis of the electron currents suggests the presence of an injection barrier for all conventionally used low workfunction cathodes.}, language = {en} }