@article{MaiWolskiPuciulMalinowskaetal.2018, author = {Mai, Tobias and Wolski, Karol and Puciul-Malinowska, Agnieszka and Kopyshev, Alexey and Gr{\"a}f, Ralph and Bruns, Michael and Zapotoczny, Szczepan and Taubert, Andreas}, title = {Anionic polymer brushes for biomimetic calcium phosphate mineralization}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10101165}, pages = {17}, year = {2018}, abstract = {This article describes the synthesis of anionic polymer brushes and their mineralization with calcium phosphate. The brushes are based on poly(3-sulfopropyl methacrylate potassium salt) providing a highly charged polymer brush surface. Homogeneous brushes with reproducible thicknesses are obtained via surface-initiated atom transfer radical polymerization. Mineralization with doubly concentrated simulated body fluid yields polymer/inorganic hybrid films containing AB-Type carbonated hydroxyapatite (CHAP), a material resembling the inorganic component of bone. Moreover, growth experiments using Dictyostelium discoideum amoebae demonstrate that the mineral-free and the mineral-containing polymer brushes have a good biocompatibility suggesting their use as biocompatible surfaces in implantology or related fields.}, language = {en} } @article{SchneiderGuenterTaubert2018, author = {Schneider, Matthias and G{\"u}nter, Christina and Taubert, Andreas}, title = {Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030275}, pages = {19}, year = {2018}, abstract = {The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.}, language = {en} }