@article{Caspari2023, author = {Caspari, Catharina}, title = {Situative Vulnerabilit{\"a}t als Ausdruck der Menschenrechtssprache?}, series = {MenschenRechtsMagazin}, volume = {28}, journal = {MenschenRechtsMagazin}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2941-1149}, doi = {10.25932/publishup-58774}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587743}, pages = {5 -- 15}, year = {2023}, abstract = {In Vorbereitung der Allgemeinen Bemerkung Nr. 36 zum Recht auf Leben vollzieht der Menschenrechtsausschuss der Vereinten Nationen eine begriffliche Wendung: Fortan wird der Ausschuss nicht mehr von "vulnerable persons", sondern von "persons in situations of vulnerability" sprechen. Zugleich scheint in der Wendung ein ge{\"a}ndertes Verst{\"a}ndnis von Vulnerabilit{\"a}t zu liegen, welches strukturelle Ungleichheiten und {\"a}ußere Umst{\"a}nde, die Verwundbarkeit erzeugen, begrifflich erfasst. Das neue Verst{\"a}ndnis scheint damit auch die Problematik der Zuschreibung von Verwundbarkeit zu entsch{\"a}rfen, die ihrerseits zu Marginalisierung betroffener Individuen f{\"u}hren kann. Der Beitrag vollzieht die Debatte um das neue Verst{\"a}ndnis von Vulnerabilit{\"a}t im Menschenrechtsausschuss nach, und kontextualisiert diese innerhalb der aktuellen Spruchpraxis des Ausschusses. Besondere Aufmerksamkeit gilt dabei den Klimaf{\"a}llen, welche, so wird argumentiert, in besonderer Weise {\"a}ußere, vulnerabilit{\"a}tsproduzierende Umst{\"a}nde adressieren. Schließlich werden die potenziellen St{\"a}rken und Schw{\"a}chen der begrifflichen Wendung reflektiert.}, language = {de} } @article{ArguellodeSouzaSamprognaMohorGuzmanAriasetal.2023, author = {Arguello de Souza, Felipe Augusto and Samprogna Mohor, Guilherme and Guzman Arias, Diego Alejandro and Sarmento Buarque, Ana Carolina and Taffarello, Denise and Mendiondo, Eduardo Mario}, title = {Droughts in S{\~a}o Paulo}, series = {Urban water journal}, volume = {20}, journal = {Urban water journal}, number = {10}, publisher = {Taylor \& Francis}, address = {London [u.a.]}, issn = {1573-062X}, doi = {10.1080/1573062X.2022.2047735}, pages = {1682 -- 1694}, year = {2023}, abstract = {Literature has suggested that droughts and societies are mutually shaped and, therefore, both require a better understanding of their coevolution on risk reduction and water adaptation. Although the Sao Paulo Metropolitan Region drew attention because of the 2013-2015 drought, this was not the first event. This paper revisits this event and the 1985-1986 drought to compare the evolution of drought risk management aspects. Documents and hydrological records are analyzed to evaluate the hazard intensity, preparedness, exposure, vulnerability, responses, and mitigation aspects of both events. Although the hazard intensity and exposure of the latter event were larger than the former one, the policy implementation delay and the dependency of service areas in a single reservoir exposed the region to higher vulnerability. In addition to the structural and non-structural tools implemented just after the events, this work raises the possibility of rainwater reuse for reducing the stress in reservoirs.}, language = {en} } @article{GomezZapataZafrirPittoreetal.2022, author = {Gomez Zapata, Juan Camilo and Zafrir, Raquel and Pittore, Massimiliano and Merino, Yvonne}, title = {Towards a sensitivity analysis in seismic risk with probabilistic building exposure models}, series = {ISPRS International Journal of Geo-Information}, volume = {11}, journal = {ISPRS International Journal of Geo-Information}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi11020113}, pages = {38}, year = {2022}, abstract = {Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaiso and Vina del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment.}, language = {en} } @article{HudsonPhamHagedoornetal.2020, author = {Hudson, Paul and Pham, My and Hagedoorn, Liselotte and Thieken, Annegret and Lasage, Ralph and Bubeck, Philip}, title = {Self-stated recovery from flooding}, series = {Journal of Flood Risk Management}, volume = {14}, journal = {Journal of Flood Risk Management}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1753-318X}, doi = {10.1111/jfr3.12680}, pages = {15}, year = {2020}, abstract = {Social inequalities lead to flood resilience inequalities across social groups, a topic that requires improved documentation and understanding. The objective of this paper is to attend to these differences by investigating self-stated flood recovery across genders in Vietnam as a conceptual replication of earlier results from Germany. This study employs a regression-based analysis of 1,010 respondents divided between a rural coastal and an urban community in Thua Thien-Hue province. The results highlight an important set of recovery process-related variables. The set of relevant variables is similar across genders in terms of inclusion and influence, and includes age, social capital, internal and external support after a flood, perceived severity of previous flood impacts, and the perception of stress-resilience. However, women were affected more heavily by flooding in terms of longer recovery times, which should be accounted for in risk management. Overall, the studied variables perform similarly in Vietnam and Germany. This study, therefore, conceptually replicates previous results suggesting that women display slightly slower recovery levels as well as that psychological variables influence recovery rates more than adverse flood impacts. This provides an indication of the results' potentially robust nature due to the different socio-environmental contexts in Germany and Vietnam.}, language = {en} } @article{KuhlickeSeebauerHudsonetal.2020, author = {Kuhlicke, Christian and Seebauer, Sebastian and Hudson, Paul and Begg, Chloe and Bubeck, Philip and Dittmer, Cordula and Grothmann, Torsten and Heidenreich, Anna and Kreibich, Heidi and Lorenz, Daniel F. and Masson, Torsten and Reiter, Jessica and Thaler, Thomas and Thieken, Annegret and Bamberg, Sebastian}, title = {The behavioral turn in flood risk management, its assumptions and potential implications}, series = {WIREs Water}, volume = {7}, journal = {WIREs Water}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1418}, pages = {1 -- 22}, year = {2020}, abstract = {Recent policy changes highlight the need for citizens to take adaptive actions to reduce flood-related impacts. Here, we argue that these changes represent a wider behavioral turn in flood risk management (FRM). The behavioral turn is based on three fundamental assumptions: first, that the motivations of citizens to take adaptive actions can be well understood so that these motivations can be targeted in the practice of FRM; second, that private adaptive measures and actions are effective in reducing flood risk; and third, that individuals have the capacities to implement such measures. We assess the extent to which the assumptions can be supported by empirical evidence. We do this by engaging with three intellectual catchments. We turn to research by psychologists and other behavioral scientists which focus on the sociopsychological factors which influence individual motivations (Assumption 1). We engage with economists, engineers, and quantitative risk analysts who explore the extent to which individuals can reduce flood related impacts by quantifying the effectiveness and efficiency of household-level adaptive measures (Assumption 2). We converse with human geographers and sociologists who explore the types of capacities households require to adapt to and cope with threatening events (Assumption 3). We believe that an investigation of the behavioral turn is important because if the outlined assumptions do not hold, there is a risk of creating and strengthening inequalities in FRM. Therefore, we outline the current intellectual and empirical knowledge as well as future research needs. Generally, we argue that more collaboration across intellectual catchments is needed, that future research should be more theoretically grounded and become methodologically more rigorous and at the same time focus more explicitly on the normative underpinnings of the behavioral turn.}, language = {en} } @article{VogelWeiseSchroeteretal.2018, author = {Vogel, Kristin and Weise, Laura and Schr{\"o}ter, Kai and Thieken, Annegret}, title = {Identifying Driving Factors in Flood-Damaging Processes Using Graphical Models}, series = {Water resources research}, volume = {54}, journal = {Water resources research}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR022858}, pages = {8864 -- 8889}, year = {2018}, abstract = {Flood damage estimation is a core task in flood risk assessments and requires reliable flood loss models. Identifying the driving factors of flood loss at residential buildings and gaining insight into their relations is important to improve our understanding of flood damage processes. For that purpose, we learn probabilistic graphical models, which capture and illustrate (in-)dependencies between the considered variables. The models are learned based on postevent surveys with flood-affected residents after six flood events, which occurred in Germany between 2002 and 2013. Besides the sustained building damage, the survey data contain information about flooding parameters, early warning and emergency measures, property-level mitigation measures and preparedness, socioeconomic characteristics of the household, and building characteristics. The analysis considers the entire data set with a total of 4,468 cases as well as subsets of the data set partitioned into single flood events and flood types: river floods, levee breaches, surface water flooding, and groundwater floods, to reveal differences in the damaging processes. The learned networks suggest that the flood loss ratio of residential buildings is directly influenced by hydrological and hydraulic aspects as well as by building characteristics and property-level mitigation measures. The study demonstrates also that for different flood events and process types the building damage is influenced by varying factors. This suggests that flood damage models need to be capable of reproducing these differences for spatial and temporal model transfers.}, language = {en} } @article{MarkovicCarrizoKaercheretal.2017, author = {Markovic, Danijela and Carrizo, Savrina F. and Kaercher, Oskar and Walz, Ariane and David, Jonathan N. W.}, title = {Vulnerability of European freshwater catchments to climate change}, series = {Global change biology}, volume = {23}, journal = {Global change biology}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13657}, pages = {3567 -- 3580}, year = {2017}, abstract = {Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25\% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.}, language = {en} } @article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} } @article{WenzKalkuhlSteckeletal.2016, author = {Wenz, Leonie and Kalkuhl, Matthias and Steckel, Jan Christoph and Creutzig, Felix}, title = {Teleconnected food supply shocks}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/3/035007}, pages = {10}, year = {2016}, abstract = {The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10\% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5\%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90\% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.}, language = {en} } @article{GeigerFrielerLevermann2016, author = {Geiger, Tobias and Frieler, Katja and Levermann, Anders}, title = {High-income does not protect against hurricane losses}, series = {Environmental research letters}, volume = {11}, journal = {Environmental research letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/11/8/084012}, pages = {10}, year = {2016}, abstract = {Damage due to tropical cyclones accounts for more than 50\% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.}, language = {en} }