@article{HermanussenScheffler2022, author = {Hermanussen, Michael and Scheffler, Christiane}, title = {Evidence of chronic undernutrition in late 19th century German infants of all social classes}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.2.42}, pages = {9}, year = {2022}, abstract = {125 years ago, European infants grew differently from modern infants. We show weight gains of 20 healthy children weighed longitudinally from birth to age 1 year, published by Camerer in 1882. The data illustrate the historically prevalent concepts of infant nutrition practiced by German civil servants, lawyers, merchants, university professors, physicians, foresters and farmers. Breastfeeding by the mother was not truly appreciated in those days; children were often breastfed by wet nurses or received bottled milk. Bottle feeding mainly used diluted cow's milk with some added carbohydrates, without evidence that appropriate amounts of oil, butter or other fatty components were added. French children from 1914 showed similar weight gain patterns suggesting similar feeding practices. The historical data suggest that energy deficient infant formula was fed regularly in the late 19th and early 20th century Europe, regardless of wealth and social class. The data question current concerns that temporarily feeding energy deficient infant formula may warrant serious anxieties regarding long-term cognitive, social and emotional behavioral development.}, language = {en} } @article{HaueisStechKubick2022, author = {Haueis, Lisa and Stech, Marlitt and Kubick, Stefan}, title = {A Cell-free Expression Pipeline for the Generation and Functional Characterization of Nanobodies}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.896763}, pages = {11}, year = {2022}, abstract = {Cell-free systems are well-established platforms for the rapid synthesis, screening, engineering and modification of all kinds of recombinant proteins ranging from membrane proteins to soluble proteins, enzymes and even toxins. Also within the antibody field the cell-free technology has gained considerable attention with respect to the clinical research pipeline including antibody discovery and production. Besides the classical full-length monoclonal antibodies (mAbs), so-called "nanobodies" (Nbs) have come into focus. A Nb is the smallest naturally-derived functional antibody fragment known and represents the variable domain (VHH, similar to 15 kDa) of a camelid heavy-chain-only antibody (HCAb). Based on their nanoscale and their special structure, Nbs display striking advantages concerning their production, but also their characteristics as binders, such as high stability, diversity, improved tissue penetration and reaching of cavity-like epitopes. The classical way to produce Nbs depends on the use of living cells as production host. Though cell-based production is well-established, it is still time-consuming, laborious and hardly amenable for high-throughput applications. Here, we present for the first time to our knowledge the synthesis of functional Nbs in a standardized mammalian cell-free system based on Chinese hamster ovary (CHO) cell lysates. Cell-free reactions were shown to be time-efficient and easy-to-handle allowing for the "on demand" synthesis of Nbs. Taken together, we complement available methods and demonstrate a promising new system for Nb selection and validation.}, language = {en} } @article{WalterZemellaSchrammetal.2022, author = {Walter, Ruben Magnus and Zemella, Anne and Schramm, Marina and Kiebist, Jan and Kubick, Stefan}, title = {Vesicle-based cell-free synthesis of short and long unspecific peroxygenases}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.964396}, pages = {14}, year = {2022}, abstract = {Unspecific peroxygenases (UPOs, EC 1.11.2.1) are fungal enzymes that catalyze the oxyfunctionalization of non-activated hydrocarbons, making them valuable biocatalysts. Despite the increasing interest in UPOs that has led to the identification of thousands of putative UPO genes, only a few of these have been successfully expressed and characterized. There is currently no universal expression system in place to explore their full potential. Cell-free protein synthesis has proven to be a sophisticated technique for the synthesis of difficult-to-express proteins. In this work, we aimed to establish an insect-based cell-free protein synthesis (CFPS) platform to produce UPOs. CFPS relies on translationally active cell lysates rather than living cells. The system parameters can thus be directly manipulated without having to account for cell viability, thereby making it highly adaptable. The insect-based lysate contains translocationally active, ER-derived vesicles, called microsomes. These microsomes have been shown to allow efficient translocation of proteins into their lumen, promoting post-translational modifications such as disulfide bridge formation and N-glycosylations. In this study the ability of a redox optimized, vesicle-based, eukaryotic CFPS system to synthesize functional UPOs was explored. The influence of different reaction parameters as well as the influence of translocation on enzyme activity was evaluated for a short UPO from Marasmius rotula and a long UPO from Agrocybe aegerita. The capability of the CFPS system described here was demonstrated by the successful synthesis of a novel UPO from Podospora anserina, thus qualifying CFPS as a promising tool for the identification and evaluation of novel UPOs and variants thereof.}, language = {en} } @article{CoudenysWarditz2021, author = {Coudenys, Wim and Warditz, Vladislava}, title = {Is translation child's play?}, series = {Die Welt der Slaven : internationale Halbjahresschrift f{\"u}r Slavistik}, volume = {66}, journal = {Die Welt der Slaven : internationale Halbjahresschrift f{\"u}r Slavistik}, number = {1}, publisher = {Harrassowitz}, address = {Wiesbaden}, issn = {0043-2520}, doi = {10.13173/ws.66.1.46}, pages = {46 -- 69}, year = {2021}, abstract = {1765 and 1767 saw the publication of the German, respectively the English translation of Lomonosov's Kratkij rossijskij letopisec s rodosloviem (1760). For the very first time the European reading public could find out how Russians saw their own history. These translations testified to Russia's ascent both as an empire and as a part of European learned society, and were made by youths who wanted to further their own career and were neither professional translators nor historians. In this article, we argue that the translations of Lomonosov's Kratkij rossijskij letopisec should not be studied as an isolated act of cultural transfer but as an episode in a longer history of circulation of knowledge. We demonstrate the complexity of this circulation by reassessing the 'quality' of these translations and positioning them in that longer history of circulation of knowledge by analysing the distribution of historical concepts (Begriffe) in Lomonosov's original and its translations.}, language = {en} } @article{Wiemann2021, author = {Wiemann, Dirk}, title = {Layer after Layer}, series = {Thesis Eleven}, volume = {162}, journal = {Thesis Eleven}, number = {1}, publisher = {Sage}, address = {Melbourne}, issn = {0725-5136}, doi = {10.1177/0725513621990772}, pages = {33 -- 45}, year = {2021}, abstract = {When the Royal Botanic Gardens at Kew in South London were opened to the general public in the 1840s, they were presented as a 'world text': a collection of flora from all over the world, with the spectacular tropical (read: colonial) specimens taking centre stage as indexes of Britain's imperial supremacy. However, the one exotic plant species that preoccupied the British cultural imagination more than any other remained conspicuously absent from the collection: the banyan tree, whose non-transferability left a significant gap in the 'text' of the garden, thereby effectively puncturing the illusion of comprehensive global command that underpins the biopolitical designs of what Richard Grove has aptly dubbed 'green imperialism'. This article demonstrates how, in the 19th and early 20th centuries, the banyan tree became an object of fascination and admiration for British scientists, painters, writers and photographers precisely because of its obstinate non-availability to colonial control and visual or even conceptual representability.}, language = {en} } @article{EcksteinSchwarz2019, author = {Eckstein, Lars and Schwarz, Anja}, title = {The making of Tupaia's map}, series = {The journal of pacific history}, volume = {54}, journal = {The journal of pacific history}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {0022-3344}, doi = {10.1080/00223344.2018.1512369}, pages = {1 -- 95}, year = {2019}, abstract = {Tupaia's Map is one of the most famous and enigmatic artefacts to emerge from the early encounters between Europeans and Pacific Islanders. It was drawn by Tupaia, an arioi priest, chiefly advisor and master navigator from Ra'iātea in the Leeward Society Islands in collaboration with various members of the crew of James Cook's Endeavour, in two distinct moments of mapmaking and three draft stages between August 1769 and February 1770. To this day, the identity of many islands on the chart, and the logic of their arrangement have posed a riddle to researchers. Drawing in part on archival material hitherto overlooked, in this long essay we propose a new understanding of the chart's cartographic logic, offer a detailed reconstruction of its genesis, and thus for the first time present a comprehensive reading of Tupaia's Map. The chart not only underscores the extent and mastery of Polynesian navigation, it is also a remarkable feat of translation between two very different wayfinding systems and their respective representational models.}, language = {en} } @article{SaffertAdamlaSchiewecketal.2016, author = {Saffert, Paul and Adamla, Frauke and Schieweck, Rico and Atkins, John F. and Ignatova, Zoya}, title = {An Expanded CAG Repeat in Huntingtin Causes+1 Frameshifting}, series = {The journal of biological chemistry}, volume = {291}, journal = {The journal of biological chemistry}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {0021-9258}, doi = {10.1074/jbc.M116.744326}, pages = {18505 -- 18513}, year = {2016}, abstract = {Maintenance of triplet decoding is crucial for the expression of functional protein because deviations either into the -1 or +1 reading frames are often non-functional. We report here that expression of huntingtin (Htt) exon 1 with expanded CAG repeats, implicated in Huntington pathology, undergoes a sporadic +1 frameshift to generate from the CAG repeat a trans-frame AGC repeat-encoded product. This +1 recoding is exclusively detected in pathological Htt variants, i.e. those with expanded repeats with more than 35 consecutive CAG codons. An atypical +1 shift site, UUC C at the 5 end of CAG repeats, which has some resemblance to the influenza A virus shift site, triggers the +1 frameshifting and is enhanced by the increased propensity of the expanded CAG repeats to form a stem-loop structure. The +1 trans-frame-encoded product can directly influence the aggregation of the parental Htt exon 1.}, language = {en} } @article{GorochowskiAycilarKucukgozeBovenbergetal.2016, author = {Gorochowski, Thomas E. and Aycilar-Kucukgoze, Irem and Bovenberg, Roel A. L. and Roubos, Johannes A. and Ignatova, Zoya}, title = {A Minimal Model of Ribosome Allocation Dynamics Captures Trade-offs in Expression between Endogenous and Synthetic Genes}, series = {ACS synthetic biology}, volume = {5}, journal = {ACS synthetic biology}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-5063}, doi = {10.1021/acssynbio.6b00040}, pages = {710 -- 720}, year = {2016}, abstract = {Cells contain a finite set of resources that must be distributed across many processes to ensure survival. Among them, the largest proportion of cellular resources is dedicated to protein translation. Synthetic biology often exploits these resources in executing orthogonal genetic circuits, yet the burden this places on the cell is rarely considered. Here, we develop a minimal model of ribosome allocation dynamics capturing the demands on translation when expressing a synthetic construct together with endogenous genes required for the maintenance of cell physiology. Critically, it contains three key variables related to design parameters of the synthetic construct covering transcript abundance, translation initiation rate, and elongation time. We show that model-predicted changes in ribosome allocation closely match experimental shifts in synthetic protein expression rate and cellular growth. Intriguingly, the model is also able to accurately infer transcript levels and translation times after further exposure to additional ambient stress. Our results demonstrate that a simple model of resource allocation faithfully captures the redistribution of protein synthesis resources when faced with the burden of synthetic gene expression and environmental stress. The tractable nature of the model makes it a versatile tool for exploring the guiding principles of efficient heterologous expression and the indirect interactions that can arise between synthetic circuits and their host chassis because of competition for shared translational resources.}, language = {en} } @article{BartholomaeusFedyuninFeistetal.2016, author = {Bartholom{\"a}us, Alexander and Fedyunin, Ivan and Feist, Peter and Sin, Celine and Zhang, Gong and Valleriani, Angelo and Ignatova, Zoya}, title = {Bacteria differently regulate mRNA abundance to specifically respond to various stresses}, series = {Geology}, volume = {374}, journal = {Geology}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2015.0069}, pages = {16}, year = {2016}, abstract = {Environmental stress is detrimental to cell viability and requires an adequate reprogramming of cellular activities to maximize cell survival. We present a global analysis of the response of Escherichia coli to acute heat and osmotic stress. We combine deep sequencing of total mRNA and ribosome-protected fragments to provide a genome-wide map of the stress response at transcriptional and translational levels. For each type of stress, we observe a unique subset of genes that shape the stress-specific response. Upon temperature upshift, mRNAs with reduced folding stability up-and downstream of the start codon, and thus with more accessible initiation regions, are translationally favoured. Conversely, osmotic upshift causes a global reduction of highly translated transcripts with high copy numbers, allowing reallocation of translation resources to not degraded and newly synthesized mRNAs.}, language = {en} } @article{KannanKanabarSchryeretal.2014, author = {Kannan, Krishna and Kanabar, Pinal and Schryer, David and Florin, Tanja and Oh, Eugene and Bahroos, Neil and Tenson, Tanel and Weissman, Jonathan S. and Mankin, Alexander S.}, title = {The general mode of translation inhibition by macrolide antibiotics}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {45}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1417334111}, pages = {15958 -- 15963}, year = {2014}, language = {en} }