@article{LopezdeGuerenuKurganovaKlierHaubitzetal.2022, author = {L{\´o}pez de Guere{\~n}u Kurganova, Anna and Klier, Dennis Tobias and Haubitz, Toni and Kumke, Michael Uwe}, title = {Influence of Gd3+ doping concentration on the properties of Na(Y,Gd)F-4}, series = {Photochemical \& photobiological sciences / European Society for Photobiology}, volume = {21}, journal = {Photochemical \& photobiological sciences / European Society for Photobiology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00161-4}, pages = {235 -- 245}, year = {2022}, abstract = {We present a systematic study on the properties of Na(Y,Gd)F-4-based upconverting nanoparticles (UCNP) doped with 18\% Yb3+, 2\% Tm3+, and the influence of Gd3+ (10-50 mol\% Gd3+). UCNP were synthesized via the solvothermal method and had a range of diameters within 13 and 50 nm. Structural and photophysical changes were monitored for the UCNP samples after a 24-month incubation period in dry phase and further redispersion. Structural characterization was performed by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as dynamic light scattering (DLS), and the upconversion luminescence (UCL) studies were executed at various temperatures (from 4 to 295 K) using time-resolved and steady-state spectroscopy. An increase in the hexagonal lattice phase with the increase of Gd3+ content was found, although the cubic phase was prevalent in most samples. The Tm3+-luminescence intensity as well as the Tm3+-luminescence decay times peaked at the Gd3+ concentration of 30 mol\%. Although the general upconverting luminescence properties of the nanoparticles were preserved, the 24-month incubation period lead to irreversible agglomeration of the UCNP and changes in luminescence band ratios and lifetimes.}, language = {en} } @article{RainerSeppeyHammeretal.2021, author = {Rainer, Edda M. and Seppey, Christophe Victor William and Hammer, Caroline and Svenning, Mette M. and Tveit, Alexander Tosdal}, title = {The influence of above-ground herbivory on the response of Arctic soil methanotrophs to increasing CH4 concentrations and temperatures}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9102080}, pages = {20}, year = {2021}, abstract = {Rising temperatures in the Arctic affect soil microorganisms, herbivores, and peatland vegetation, thus directly and indirectly influencing microbial CH4 production. It is not currently known how methanotrophs in Arctic peat respond to combined changes in temperature, CH4 concentration, and vegetation. We studied methanotroph responses to temperature and CH4 concentration in peat exposed to herbivory and protected by exclosures. The methanotroph activity was assessed by CH4 oxidation rate measurements using peat soil microcosms and a pure culture of Methylobacter tundripaludum SV96, qPCR, and sequencing of pmoA transcripts. Elevated CH4 concentrations led to higher CH4 oxidation rates both in grazed and exclosed peat soils, but the strongest response was observed in grazed peat soils. Furthermore, the relative transcriptional activities of different methanotroph community members were affected by the CH4 concentrations. While transcriptional responses to low CH4 concentrations were more prevalent in grazed peat soils, responses to high CH4 concentrations were more prevalent in exclosed peat soils. We observed no significant methanotroph responses to increasing temperatures. We conclude that methanotroph communities in these peat soils respond to changes in the CH4 concentration depending on their previous exposure to grazing. This "conditioning " influences which strains will thrive and, therefore, determines the function of the methanotroph community.}, language = {en} } @article{MardoukhiMardoukhiHokkaetal.2020, author = {Mardoukhi, Ahmad and Mardoukhi, Yousof and Hokka, Mikko and Kuokkala, Veli-Tapani}, title = {Effects of test temperature and low temperature thermal cycling on the dynamic tensile strength of granitic rocks}, series = {Rock mechanics and rock engineering}, volume = {54}, journal = {Rock mechanics and rock engineering}, number = {1}, publisher = {Springer}, address = {Wien}, issn = {0723-2632}, doi = {10.1007/s00603-020-02253-6}, pages = {443 -- 454}, year = {2020}, abstract = {This paper presents an experimental procedure for the characterization of the granitic rocks on a Mars-like environment. To gain a better understanding of the drilling conditions on Mars, the dynamic tensile behavior of the two granitic rocks was studied using the Brazilian disc test and a Split Hopkinson Pressure Bar. The room temperature tests were performed on the specimens, which had gone through thermal cycling between room temperature and - 70 degrees C for 0, 10, 15, and 20 cycles. In addition, the high strain rate Brazilian disc tests were carried out on the samples without the thermal cyclic loading at test temperatures of - 30 degrees C, - 50 degrees C, and - 70 degrees C. Microscopy results show that the rocks with different microstructures respond differently to cyclic thermal loading. However, decreasing the test temperature leads to an increasing in the tensile strength of both studied rocks, and the softening of the rocks is observed for both rocks as the temperature reaches - 70 degrees C. This paper presents a quantitative assessment of the effects of the thermal cyclic loading and temperature on the mechanical behavior of studied rocks in the Mars-like environment. The results of this work will bring new insight into the mechanical response of rock material in extreme environments.}, language = {en} } @article{ReschkeKroenerLaepple2020, author = {Reschke, Maria and Kr{\"o}ner, Igor and Laepple, Thomas}, title = {Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records}, series = {Journal of quaternary science : JQS}, volume = {36}, journal = {Journal of quaternary science : JQS}, number = {1}, publisher = {Wiley}, address = {New York}, issn = {0267-8179}, doi = {10.1002/jqs.3245}, pages = {20 -- 28}, year = {2020}, abstract = {Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.}, language = {en} } @article{AldiyarovSokolovAkylbayevaetal.2020, author = {Aldiyarov, Abdurakhman and Sokolov, Dmitriy and Akylbayeva, Aigerim and Nurmukan, Assel and Tokmoldin, Nurlan}, title = {On thermal stability of cryovacuum deposited CH4+H2O films}, series = {Low temperature physics}, volume = {46}, journal = {Low temperature physics}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1063-777X}, doi = {10.1063/10.0002156}, pages = {1121 -- 1124}, year = {2020}, abstract = {Whereas stable homogenous states of aqueous hydrocarbon solutions are typically observed at high temperatures and pressures far beyond the critical values corresponding to individual components, the stability of such system may be preserved upon transition into the region of metastable states at low temperatures and low pressures. This work is dedicated to the study of the thermal stability of a water-methane mixture formed by cryogenic vapor phase deposition. The obtained thin films were studied using vibrational spectroscopy in the temperature range of 16-180 K. During thermal annealing of the samples, characteristic vibrational C-H modes of methane were monitored alongside the chamber pressure to register both structural changes and desorption of the film material. The obtained results reveal that upon the co-deposition of methane and water, methane molecules appear both in non-bound and trapped states. The observed broadening of the characteristic C-H stretching mode at 3010 cm(-1) upon an increase in temperature of the sample from 16 to 90 K, followed by narrowing of the peak as the temperature is reduced back to 16 K, indicates localization of methane molecules within the water matrix at lower temperatures.}, language = {en} } @article{EugeniaTietzeJoshiPugnaireetal.2019, author = {Eugenia Tietze, Hedwig Selma and Joshi, Jasmin Radha and Pugnaire, Francisco Ignacio and Dechoum, Michele de Sa}, title = {Seed germination and seedling establishment of an invasive tropical tree species under different climate change scenarios}, series = {Austral ecology}, volume = {44}, journal = {Austral ecology}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {1442-9985}, doi = {10.1111/aec.12809}, pages = {1351 -- 1358}, year = {2019}, abstract = {Increasing air temperature and atmospheric CO2 levels may affect the distribution of invasive species. Whereas there is wide knowledge on the effect of global change on temperate species, responses of tropical invasive species to these two global change drivers are largely unknown. We conducted a greenhouse experiment on Terminalia catappa L. (Combretaceae), an invasive tree species on Brazilian coastal areas, to evaluate the effects of increased air temperature and CO2 concentration on seed germination and seedling growth on the island of Santa Catarina (Florianopolis, Brazil). Seeds of the invasive tree were subjected to two temperature levels (ambient and +1.6 degrees C) and two CO2 levels (ambient and 650 ppmv) with a factorial design. Increased temperature enhanced germination rate and shortened germination time of T. catappa seeds. It also increased plant height, number of leaves and above-ground biomass. By contrast, increased atmospheric CO2 concentration had no significant effects, and the interaction between temperature and CO2 concentration did not affect any of the measured traits. Terminalia catappa adapts to a relatively broad range of environmental conditions, being able to tolerate cooler temperatures in its invasive range. As T. catappa is native to tropical areas, global warming might favour its establishment along the coast of subtropical South America, while increased CO2 levels seem not to have significant effects on seed germination or seedling growth.}, language = {en} } @article{LemaireHonoreTempeletal.2019, author = {Lemaire, Olivier N. and Honore, Flora A. and Tempel, Sebastien and Fortier, Emma M. and Leimk{\"u}hler, Silke and Mejean, Vincent and Iobbi-Nivol, Chantal}, title = {Shewanella decolorationis LDS1 Chromate Resistance}, series = {Applied and environmental microbiology}, volume = {85}, journal = {Applied and environmental microbiology}, number = {18}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.00777-19}, pages = {15}, year = {2019}, abstract = {The genus Shewanella is well known for its genetic diversity, its outstanding respiratory capacity, and its high potential for bioremediation. Here, a novel strain isolated from sediments of the Indian Ocean was characterized. A 16S rRNA analysis indicated that it belongs to the species Shewanella decolorationis. It was named Shewanella decolorationis LDS1. This strain presented an unusual ability to grow efficiently at temperatures from 24 degrees C to 40 degrees C without apparent modifications of its metabolism, as shown by testing respiratory activities or carbon assimilation, and in a wide range of salt concentrations. Moreover, S. decolorationis LDS1 tolerates high chromate concentrations. Indeed, it was able to grow in the presence of 4 mM chromate at 28 degrees C and 3 mM chromate at 40 degrees C. Interestingly, whatever the temperature, when the culture reached the stationary phase, the strain reduced the chromate present in the growth medium. In addition, S. decolorationis LDS1 degrades different toxic dyes, including anthraquinone, triarylmethane, and azo dyes. Thus, compared to Shewanella oneidensis, this strain presented better capacity to cope with various abiotic stresses, particularly at high temperatures. The analysis of genome sequence preliminary data indicated that, in contrast to S. oneidensis and S. decolorationis S12, S. decolorationis LDS1 possesses the phosphorothioate modification machinery that has been described as participating in survival against various abiotic stresses by protecting DNA. We demonstrate that its heterologous production in S. oneidensis allows it to resist higher concentrations of chromate. IMPORTANCE Shewanella species have long been described as interesting microorganisms in regard to their ability to reduce many organic and inorganic compounds, including metals. However, members of the Shewanella genus are often depicted as cold-water microorganisms, although their optimal growth temperature usually ranges from 25 to 28 degrees C under laboratory growth conditions. Shewanella decolorationis LDS1 is highly attractive, since its metabolism allows it to develop efficiently at temperatures from 24 to 40 degrees C, conserving its ability to respire alternative substrates and to reduce toxic compounds such as chromate or toxic dyes. Our results clearly indicate that this novel strain has the potential to be a powerful tool for bioremediation and unveil one of the mechanisms involved in its chromate resistance.}, language = {en} } @article{BachmannHeimbachHassenruecketal.2018, author = {Bachmann, Jennifer and Heimbach, Tabea and Hassenr{\"u}ck, Christiane and Kopprio, German A. and Iversen, Morten Hvitfeldt and Grossart, Hans-Peter and G{\"a}rdes, Astrid}, title = {Environmental Drivers of Free-Living vs. Particle-Attached Bacterial Community Composition in the Mauritania Upwelling System}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.02836}, pages = {13}, year = {2018}, abstract = {Saharan dust input and seasonal upwelling along North-West Africa provide a model system for studying microbial processes related to the export and recycling of nutrients. This study offers the first molecular characterization of prokaryotic particle-attached (PA; > 3.0 mu m) and free-living (FL; 0.2-3.0 mu m) players in this important ecosystem during August 2016. Environmental drivers for alpha-diversity, bacterial community composition, and differences between FL and PA fractions were identified. The ultra-oligotrophic waters off Senegal were dominated by Cyanobacteria while higher relative abundances of Alphaproteobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes (known particle-degraders) occurred in the upwelling area. Temperature, proxy for different water masses, was the best predictor for changes in FL communities. PA community variation was best explained by temperature and ammonium. Bray Curtis dissimilarities between FL and PA were generally very high and correlated with temperature and salinity in surface waters. Greatest similarities between FL and PA occurred at the deep chlorophyll maximum, where bacterial substrate availability was likely highest. This indicates that environmental drivers do not only influence changes among FL and PA communities but also differences between them. This could provide an explanation for contradicting results obtained by different studies regarding the dissimilarity/similarity between FL and PA communities and their biogeochemical functions.}, language = {en} } @article{MantzoukiLurlingFastneretal.2018, author = {Mantzouki, Evanthia and Lurling, Miquel and Fastner, Jutta and Domis, Lisette Nicole de Senerpont and Wilk-Wozniak, Elzbieta and Koreiviene, Judita and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Krzton, Wojciech and Walusiak, Edward and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Cillero-Castro, Carmen and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Karakaya, Nusret and Haggqvist, Kerstin and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Ozhan, Koray and Gkelis, Spyros and Panou, Manthos and Fakioglu, Ozden and Avagianos, Christos and Kaloudis, Triantafyllos and Celik, Kemal and Yilmaz, Mete and Marce, Rafael and Catalan, Nuria and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Raposeiro, Pedro M. and Goncalves, Vitor and Antoniou, Maria G. and Tsiarta, Nikoletta and McCarthy, Valerie and Perello, Victor C. and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Gagala, Ilona and Mankiewicz-Boczek, Joana and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Richardson, Jessica and Visser, Petra M. and Verspagen, Jolanda M. H. and Karan, Tunay and Soylu, Elif Neyran and Maraslioglu, Faruk and Napiorkowska-Krzebietke, Agnieszka and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Antao-Geraldes, Ana M. and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Fonvielle, Jeremy Andre and Straile, Dietmar and Rothhaupt, Karl-Otto and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Kocer, Mehmet Ali Turan and Alp, Mehmet Tahir and Remec-Rekar, Spela and Elersek, Tina and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Haande, Sigrid and Skjelbred, Birger and Madrecka, Beata and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Edwards, Christine and Sevindik, Tugba Ongun and Tunca, Hatice and OEnem, Burcin and Aleksovski, Boris and Krstic, Svetislav and Vucelic, Itana Bokan and Nawrocka, Lidia and Salmi, Pauliina and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Delgado-Martin, Jordi and Garcia, David and Cereijo, Jose Luis and Goma, Joan and Trapote, Mari Carmen and Vegas-Vilarrubia, Teresa and Obrador, Biel and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Ubeda, Barbara and Angel Galvez, Jose and Ozen, Arda and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Kobos, Justyna and Mazur-Marzec, Hanna and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Arvola, Lauri and Alcaraz-Parraga, Pablo and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Leira, Manel and Hernandez, Armand and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Miguel Soria, Juan and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Kostrzewska-Szlakowska, Iwona and Jasser, Iwona and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ozkan, Korhan and Maliaka, Valentini and Kangro, Kersti and Grossart, Hans-Peter and Paerl, Hans W. and Carey, Cayelan C. and Ibelings, Bas W.}, title = {Temperature effects explain continental scale distribution of cyanobacterial toxins}, series = {Toxins}, volume = {10}, journal = {Toxins}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins10040156}, pages = {24}, year = {2018}, abstract = {Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.}, language = {en} } @article{KoussoroplisPincebourdeWacker2017, author = {Koussoroplis, Apostolos-Manuel and Pincebourde, Sylvain and Wacker, Alexander}, title = {Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {87}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1247}, pages = {178 -- 197}, year = {2017}, abstract = {Understanding how variance in environmental factors affects physiological performance, population growth, and persistence is central in ecology. Despite recent interest in the effects of variance in single biological drivers, such as temperature, we have lacked a comprehensive framework for predicting how the variances and covariances between multiple environmental factors will affect physiological rates. Here, we integrate current theory on variance effects with co-limitation theory into a single unified conceptual framework that has general applicability. We show how the framework can be applied (1) to generate mathematically tractable predictions of the physiological effects of multiple fluctuating co-limiting factors, (2) to understand how each co-limiting factor contributes to these effects, and (3) to detect mechanisms such as acclimation or physiological stress when they are at play. We show that the statistical covariance of co-limiting factors, which has not been considered before, can be a strong driver of physiological performance in various ecological contexts. Our framework can provide powerful insights on how the global change-induced shifts in multiple environmental factors affect the physiological performance of organisms.}, language = {en} }