@article{FeddersMuenznerWeberetal.2021, author = {Fedders, Ronja and Muenzner, Matthias and Weber, Pamela and Sommerfeld, Manuela and Knauer, Miriam and Kedziora, Sarah and Kast, Naomi and Heidenreich, Steffi and Raila, Jens and Weger, Stefan and Henze, Andrea and Schupp, Michael}, title = {Liver-secreted RBP4 does not impair glucose homeostasis in mice}, series = {The journal of biological chemistry}, volume = {293}, journal = {The journal of biological chemistry}, number = {39}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA118.004294}, pages = {15269 -- 15276}, year = {2021}, abstract = {Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.}, language = {en} } @article{TeraoGarattiniRomaoetal.2020, author = {Terao, Mineko and Garattini, Enrico and Rom{\~a}o, Maria Jo{\~a}o and Leimk{\"u}hler, Silke}, title = {Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes}, series = {The journal of biological chemistry}, volume = {295}, journal = {The journal of biological chemistry}, number = {16}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Rockville}, issn = {0021-9258}, doi = {10.1074/jbc.REV119.007741}, pages = {5377 -- 5389}, year = {2020}, abstract = {Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.}, language = {en} } @article{VignonZellwegerRahnenfuehrerTheuringetal.2012, author = {Vignon-Zellweger, Nicolas and Rahnenf{\"u}hrer, Jan and Theuring, Franz and Hocher, Berthold}, title = {Analysis of cardiac and renal endothelin receptors by in situ hybridization in mice}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.120216}, pages = {939 -- 949}, year = {2012}, abstract = {Background: Endothelin-1 (ET-1) is a multifunctional peptide, which is implicated in the renal and cardiac physicology as well as in many pathologies of these systems. ET-1's actions take place after the activation of two receptors: ETA and ETB. The expression of these receptors may be modulated during the pathologic process. The analysis of the distribution and level of expression of the receptors in animal models is therefore crucial. Methods: We developed a protocol for non-radioactive in situ hybridization for the mRNA of the two endothelin receptors on paraffin-embedded tissue using digoxigenin-labeled RNA probes. Results: In heart and kidney, the staining was reliable and specific. In a mouse model for endothelin/nitric oxide imbalance, cardiac ETB expression was reduced. The distribution of the receptors was in accordance with the actual knowledge. Differences in cell specific expression are discussed. Conclusions: We developed a protocol for the in situ hybridization of the endothelin receptors in mice. Given that the endothelin system is implicated in the development of many diseases, we believe that this protocol may be useful for a number of future preclinical studies.}, language = {en} }