@article{ZouhalBenAbderrahmanDupontetal.2019, author = {Zouhal, Hassane and Ben Abderrahman, Abderraouf and Dupont, Gregory and Truptin, Pablo and Le Bris, R{\´e}gis and Le Postec, Erwan and Sghaeir, Zouita and Brughelli, Matt and Granacher, Urs and Bideau, Benoit}, title = {Effects of Neuromuscular Training on Agility Performance in Elite Soccer Players}, series = {Frontiers in Physiology}, volume = {10}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.00947}, pages = {9}, year = {2019}, abstract = {Background: Agility in general and change-of-direction speed (CoD) in particular represent important performance determinants in elite soccer. Objectives: The objectives of this study were to determine the effects of a 6-week neuromuscular training program on agility performance, and to determine differences in movement times between the slower and faster turning directions in elite soccer players. Materials and Methods: Twenty male elite soccer players from the Stade Rennais Football Club (Ligue 1, France) participated in this study. The players were randomly assigned to a neuromuscular training group (NTG, n = 10) or an active control (CG, n = 10) according to their playing position. NTG participated in a 6-week, twice per week neuromuscular training program that included CoD, plyometric and dynamic stability exercises. Neuromuscular training replaced the regular warm-up program. Each training session lasted 30 min. CG continued their regular training program. Training volume was similar between groups. Before and after the intervention, the two groups performed a reactive agility test that included 180° left and right body rotations followed by a 5-m linear sprint. The weak side was defined as the left/right turning direction that produced slower overall movement times (MT). Reaction time (RT) was assessed and defined as the time from the first appearance of a visual stimulus until the athlete's first movement. MT corresponded to the time from the first movement until the athlete reached the arrival gate (5 m distance). Results: No significant between-group baseline differences were observed for RT or MT. Significant group x time interactions were found for MT (p = 0.012, effect size = 0.332, small) for the slower and faster directions (p = 0.011, effect size = 0.627, moderate). Significant pre-to post improvements in MT were observed for NTG but not CG (p = 0.011, effect size = 0.877, moderate). For NTG, post hoc analyses revealed significant MT improvements for the slower (p = 0.012, effect size = 0.897, moderate) and faster directions (p = 0.017, effect size = 0.968, moderate). Conclusion: Our results illustrate that 6 weeks of neuromuscular training with two sessions per week included in the warm-up program, significantly enhanced agility performance in elite soccer players. Moreover, improvements were found on both sides during body rotations. Thus, practitioners are advised to focus their training programs on both turning directions.}, language = {en} } @article{SanderScheffler2016, author = {Sander, Martha Maria and Scheffler, Christiane}, title = {Bilateral asymmetry in left handers increased concerning morphological laterality in a recent sample of young adults}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\~A}¼r Anthropologie}, volume = {73}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\~A}¼r Anthropologie}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2016/0663}, pages = {335 -- 342}, year = {2016}, language = {en} } @article{FritzschWangdosSantosetal.2014, author = {Fritzsch, Claire and Wang, Jing and dos Santos, Luara Ferreira and Mauritz, Karl-Heinz and Brunetti, Maddalena and Dohle, Christian}, title = {Different effects of the mirror illusion on motor and somatosensory processing}, series = {Restorative neurology and neuroscience}, volume = {32}, journal = {Restorative neurology and neuroscience}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {0922-6028}, doi = {10.3233/RNN-130343}, pages = {269 -- 280}, year = {2014}, abstract = {Purpose: Mirror therapy can improve motor and sensory functions, but effects of the mirror illusion on primary motor and somatosensory cortex could not be established consistently. Methods: Fifteen right handed healthy volunteers performed or observed a finger-thumb opposition task. Cerebral activations during normal movement (NOR), mirrored movement (MIR) and movement observation (OBS) by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Activation sizes in movement > static conditions were identified using SPM8 (p < 0.001, unc.) and attributed to predefined areas employing the Anatomy toolbox 1.8. Laterality indices for the responsive areas were calculated on the basis of the number of activated voxels. Results: Relevant bilateral BOLD responses were found in primary motor (M1) and somatosensory (S1 - BA 2, 3b and 3a) cortex, premotor and parietal areas and V5. When comparing MIR to NOR, no significant change of contralateral activation in M1 was found, but clearly at S1 with differences between hands. Conclusion: The mirror illusion does not elicit immediate changes in motor areas, yet there is a direct effect on somatosensory areas, especially for left hand movements. These results suggest different effects of mirror therapy on processing and rehabilitation of motor and sensory function.}, language = {en} }