@article{MerfortBauerHumpenoederetal.2023, author = {Merfort, Leon and Bauer, Nico and Humpen{\"o}der, Florian and Klein, David and Strefler, Jessica and Popp, Alexander and Luderer, Gunnar and Kriegler, Elmar}, title = {Bioenergy-induced land-use-change emissions with sectorally fragmented policies}, series = {Nature climate change}, volume = {13}, journal = {Nature climate change}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-023-01697-2}, pages = {685 -- 692}, year = {2023}, abstract = {Controlling bioenergy-induced land-use-change emissions is key to exploiting bioenergy for climate change mitigation. However, the effect of different land-use and energy sector policies on specific bioenergy emissions has not been studied so far. Using the global integrated assessment model REMIND-MAgPIE, we derive a biofuel emission factor (EF) for different policy frameworks. We find that a uniform price on emissions from both sectors keeps biofuel emissions at 12 kg CO2 GJ-1. However, without land-use regulation, the EF increases substantially (64 kg CO2 GJ-1 over 80 years, 92 kg CO2 GJ-1 over 30 years). We also find that comprehensive coverage (>90\%) of carbon-rich land areas worldwide is key to containing land-use emissions. Pricing emissions indirectly on the level of bioenergy consumption reduces total emissions by cutting bioenergy demand but fails to reduce the average EF. In the absence of comprehensive and timely land-use regulation, bioenergy thus may contribute less to climate change mitigation than assumed previously.}, language = {en} } @article{MerfortBauerHumpenoederetal.2023, author = {Merfort, Leon and Bauer, Nico and Humpen{\"o}der, Florian and Klein, David and Strefler, Jessica and Popp, Alexander and Luderer, Gunnar and Kriegler, Elmar}, title = {State of global land regulation inadequate to control biofuel land-use-change emissions}, series = {Nature climate change}, volume = {13}, journal = {Nature climate change}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-023-01711-7}, pages = {610 -- 612}, year = {2023}, abstract = {Under current land-use regulation, carbon dioxide emissions from biofuel production exceed those from fossil diesel combustion. Therefore, international agreements need to ensure the effective and globally comprehensive protection of natural land before modern bioenergy can effectively contribute to achieving carbon neutrality.}, language = {en} } @article{BersalliTroendleLilliestam2023, author = {Bersalli, Germ{\´a}n and Tr{\"o}ndle, Tim and Lilliestam, Johan}, title = {Most industrialised countries have peaked carbon dioxide emissions during economic crises through strengthened structural change}, series = {Communications earth \& environment}, volume = {4}, journal = {Communications earth \& environment}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2662-4435}, doi = {10.1038/s43247-023-00687-8}, pages = {44 -- 44}, year = {2023}, abstract = {As the climate targets tighten and countries are impacted by several crises, understanding how and under which conditions carbon dioxide emissions peak and start declining is gaining importance. We assess the timing of emissions peaks in all major emitters (1965-2019) and the extent to which past economic crises have impacted structural drivers of emissions contributing to emission peaks. We show that in 26 of 28 countries that have peaked emissions, the peak occurred just before or during a recession through the combined effect of lower economic growth (1.5 median percentage points per year) and decreasing energy and/or carbon intensity (0.7) during and after the crisis. In peak-and-decline countries, crises have typically magnified pre-existing improvements in structural change. In non-peaking countries, economic growth was less affected, and structural change effects were weaker or increased emissions. Crises do not automatically trigger peaks but may strengthen ongoing decarbonisation trends through several mechanisms.}, language = {en} }