@article{GomezZapataZafrirPittoreetal.2022, author = {Gomez Zapata, Juan Camilo and Zafrir, Raquel and Pittore, Massimiliano and Merino, Yvonne}, title = {Towards a sensitivity analysis in seismic risk with probabilistic building exposure models}, series = {ISPRS International Journal of Geo-Information}, volume = {11}, journal = {ISPRS International Journal of Geo-Information}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi11020113}, pages = {38}, year = {2022}, abstract = {Efforts have been made in the past to enhance building exposure models on a regional scale with increasing spatial resolutions by integrating different data sources. This work follows a similar path and focuses on the downscaling of the existing SARA exposure model that was proposed for the residential building stock of the communes of Valparaiso and Vina del Mar (Chile). Although this model allowed great progress in harmonising building classes and characterising their differential physical vulnerabilities, it is now outdated, and in any case, it is spatially aggregated over large administrative units. Hence, to more accurately consider the impact of future earthquakes on these cities, it is necessary to employ more reliable exposure models. For such a purpose, we propose updating this existing model through a Bayesian approach by integrating ancillary data that has been made increasingly available from Volunteering Geo-Information (VGI) activities. Its spatial representation is also optimised in higher resolution aggregation units that avoid the inconvenience of having incomplete building-by-building footprints. A worst-case earthquake scenario is presented to calculate direct economic losses and highlight the degree of uncertainty imposed by exposure models in comparison with other parameters used to generate the seismic ground motions within a sensitivity analysis. This example study shows the great potential of using increasingly available VGI to update worldwide building exposure models as well as its importance in scenario-based seismic risk assessment.}, language = {en} } @article{SchneiderWalsh2019, author = {Schneider, Birgit and Walsh, Lynda}, title = {The politics of zoom}, series = {Geo: Geography and Environment}, volume = {6}, journal = {Geo: Geography and Environment}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2054-4049}, doi = {10.1002/geo2.70}, pages = {11}, year = {2019}, abstract = {Following the mandate in the Paris Agreement for signatories to provide "climate services" to their constituents, "downscaled" climate visualizations are proliferating. But the process of downscaling climate visualizations does not neutralize the political problems with their synoptic global sources—namely, their failure to empower communities to take action and their replication of neoliberal paradigms of globalization. In this study we examine these problems as they apply to interactive climate-visualization platforms, which allow their users to localize global climate information to support local political action. By scrutinizing the political implications of the "zoom" tool from the perspective of media studies and rhetoric, we add to perspectives of cultural cartography on the issue of scaling from our fields. Namely, we break down the cinematic trope of "zooming" to reveal how it imports the political problems of synopticism to the level of individual communities. As a potential antidote to the politics of zoom, we recommend a downscaling strategy of connectivity, which associates rather than reduces situated views of climate to global ones.}, language = {en} } @article{MurawskiVorogushynBuergeretal.2018, author = {Murawski, Aline and Vorogushyn, Sergiy and B{\"u}rger, Gerd and Gerlitz, Lars and Merz, Bruno}, title = {Do changing weather types explain observed climatic trends in the rhine basin?}, series = {Journal of geophysical of geophysical research-atmosheres}, volume = {123}, journal = {Journal of geophysical of geophysical research-atmosheres}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-897X}, doi = {10.1002/2017JD026654}, pages = {1562 -- 1584}, year = {2018}, abstract = {For attributing hydrological changes to anthropogenic climate change, catchment models are driven by climate model output. A widespread approach to bridge the spatial gap between global climate and hydrological catchment models is to use a weather generator conditioned on weather patterns (WPs). This approach assumes that changes in local climate are characterized by between-type changes of patterns. In this study we test this assumption by analyzing a previously developed WP classification for the Rhine basin, which is based on dynamic and thermodynamic variables. We quantify changes in pattern characteristics and associated climatic properties. The amount of between- and within-type changes is investigated by comparing observed trends to trends resulting solely from WP occurrence. To overcome uncertainties in trend detection resulting from the selected time period, all possible periods in 1901-2010 with a minimum length of 31 years are analyzed. Increasing frequency is found for some patterns associated with high precipitation, although the trend sign highly depends on the considered period. Trends and interannual variations of WP frequencies are related to the long-term variability of large-scale circulation modes. Long-term WP internal warming is evident for summer patterns and enhanced warming for spring/autumn patterns since the 1970s. Observed trends in temperature and partly in precipitation are mainly associated with frequency changes of specific WPs, but some amount of within-type changes remains. The classification can be used for downscaling of past changes considering this limitation, but the inclusion of thermodynamic variables into the classification impedes the downscaling of future climate projections.}, language = {en} }