@article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{DombrowskiErmakovaFabian2019, author = {Dombrowski, Sebastian and Ermakova, Tatiana and Fabian, Benjamin}, title = {Graph-based analysis of cloud connectivity at the internet protocol level}, series = {International Journal of Communication Networks and Distributed Systems (IJCNDS)}, volume = {23}, journal = {International Journal of Communication Networks and Distributed Systems (IJCNDS)}, number = {1}, publisher = {Inderscience Enterprises Ltd}, address = {Geneva}, issn = {1754-3916}, doi = {10.1504/IJCNDS.2019.100644}, pages = {117 -- 142}, year = {2019}, abstract = {Internet connectivity of cloud services is of exceptional importance for both their providers and consumers. This article demonstrates the outlines of a method for measuring cloud-service connectivity at the internet protocol level from a client's perspective. For this, we actively collect connectivity data via traceroute measurements from PlanetLab to several major cloud services. Furthermore, we construct graph models from the collected data, and analyse the connectivity of the services based on important graph-based measures. Then, random and targeted node removal attacks are simulated, and the corresponding vulnerability of cloud services is evaluated. Our results indicate that cloud service hosts are, on average, much better connected than average hosts. However, when interconnecting nodes are removed in a targeted manner, cloud connectivity is dramatically reduced.}, language = {en} }