@article{JiaQuanLiuetal.2019, author = {Jia, He and Quan, Ting and Liu, Xuelian and Bai, Lu and Wang, Jiande and Boujioui, Fadoi and Ye, Ran and Vald, Alexandru and Lu, Yan and Gohy, Jean-Francois}, title = {Core-shell nanostructured organic redox polymer cathodes with superior performance}, series = {Nano Energy}, volume = {64}, journal = {Nano Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2211-2855}, doi = {10.1016/j.nanoen.2019.103949}, pages = {9}, year = {2019}, abstract = {Core-shell nanoparticles stabilized by a cationic surfactant are prepared from the poly(2,2,6,6-tetra-methylpiperidinyloxy-4-yl methacrylate) redox polymer. The nanoparticles are further self-assembled with negatively charged reduced graphene oxide nanosheets and negatively charged mull-walled carbon nanotubes. This results in the formation of a free-standing cathode with a layered nanostructure and a high content of redox polymer that exhibits 100\% utilization of the active substance with a measured capacity as high as 105 mAh/g based on the whole weight of the electrode.}, language = {en} } @article{PinyouRuffPoelleretal.2016, author = {Pinyou, Piyanut and Ruff, Adrian and Poeller, Sascha and Alsaoub, Sabine and Leimk{\"u}hler, Silke and Wollenberger, Ursula and Schuhmann, Wolfgang}, title = {Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {109}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2015.12.005}, pages = {24 -- 30}, year = {2016}, abstract = {Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O-2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }