@article{ŚlęzakMetzlerMagdziarz2018, author = {Ślęzak, Jakub and Metzler, Ralf and Magdziarz, Marcin}, title = {Superstatistical generalised Langevin equation}, series = {New Journal of Physics}, volume = {20}, journal = {New Journal of Physics}, number = {023026}, publisher = {Deutsche Physikalische Gesellschaft / Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa3d4}, pages = {1 -- 25}, year = {2018}, abstract = {Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.}, language = {en} } @article{ŚlęzakBurneckiMetzler2019, author = {Ślęzak, Jakub and Burnecki, Krzysztof and Metzler, Ralf}, title = {Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems}, series = {New Journal of Physics}, volume = {21}, journal = {New Journal of Physics}, publisher = {Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab3366}, pages = {18}, year = {2019}, abstract = {Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as 'superstatistics' or 'diffusing diffusivity'. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.}, language = {en} } @article{OehbergSurkovTittonenetal.1997, author = {{\"O}hberg, P. and Surkov, E. L. and Tittonen, I. and Stenholm, Stig and Wilkens, Martin and Shlyapnikov, G. V.}, title = {Low-energy elementary excitations of a trapped Bose-condensed gas}, year = {1997}, abstract = {We develop a method of finding analytical sotutions of the Bogolyubov-de Gennes equations for the excitations of a Bose condensate in the Thomas-Fermi regime in harmonic traps of any asymmetry and introduce a classification of eigenstates. In the case of cylindrical symmetry we emphasize the presence of an accidental degeneracy in the excitation spectrum at certain values of the projection of orbital angular momentum on the symmetry axis and discuss possible consequences of the degeneracy in the context of new signatures of Bose- Einstein condensation}, language = {en} } @article{ZoellerHainzlKurths2001, author = {Z{\"o}ller, Gert and Hainzl, Sebastian and Kurths, J{\"u}rgen}, title = {Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes}, year = {2001}, language = {en} } @article{ZykovBordyugovLentzetal.2010, author = {Zykov, Vladimir and Bordyugov, Grigory and Lentz, Hartmut and Engel, Harald}, title = {Hysteresis phenomenon in the dynamics of spiral waves rotating around a hole}, issn = {0167-2789}, doi = {10.1016/j.physd.2009.07.018}, year = {2010}, abstract = {Hysteresis in the pinning-depinning transitions of spiral waves rotating around a hole in a circular shaped two- dimensional excitable medium is studied both by use of the continuation software AUTO and by direct numerical integration of the reaction-diffusion equations for the FitzHugh-Nagumo model. In order to clarify the role of different factors in this phenomenon, a kinematical description is applied. It is found that the hysteresis phenomenon computed for the reaction-diffusion model can be reproduced qualitatively only when a nonlinear eikonal equation (i.e. velocity- curvature relationship) is assumed. However, to obtain quantitative agreement, the dispersion relation has to be taken into account.}, language = {en} } @article{ZuritaSanchezHenkel2006, author = {Zurita-S{\´a}nchez, Jorge R. and Henkel, Carsten}, title = {Lossy electrical transmission lines: Thermal fluctuations and quantization}, issn = {1050-2947}, doi = {10.1103/Physreva.73.063825}, year = {2006}, abstract = {We present a theoretical framework for the analysis of the statistical properties of thermal fluctuations on a lossy transmission line. A quantization scheme of the electrical signals in the transmission line is formulated. We discuss two applications in detail. Noise spectra at finite temperature for voltage and current are shown to deviate significantly from the Johnson-Nyquist limit, and they depend on the position on the transmission line. We analyze the spontaneous emission, at low temperature, of a Rydberg atom and its resonant enhancement due to vacuum fluctuations in a capacitively coupled transmission line. The theory can also be applied to study the performance of microscale and nanoscale devices, including high-resolution sensors and quantum information processors}, language = {en} } @article{ZuritaSanchezHenkel2012, author = {Zurita-Sanchez, Jorge R. and Henkel, Carsten}, title = {Acoustic waves from mechanical impulses due to fluorescence resonant energy (Forster) transfer Blowing a whistle with light}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {97}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {4}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/97/43002}, pages = {6}, year = {2012}, abstract = {We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Forster transfer (FRET) arises in the unstable D* A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.}, language = {en} } @article{ZuoShoaeeKemerinketal.2021, author = {Zuo, Guangzheng and Shoaee, Safa and Kemerink, Martijn and Neher, Dieter}, title = {General rules for the impact of energetic disorder and mobility on nongeminate recombination in phase-separated organic solar cells}, series = {Physical review applied}, volume = {16}, journal = {Physical review applied}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.16.034027}, pages = {19}, year = {2021}, abstract = {State-of-the-art organic solar cells exhibit power conversion efficiencies of 18\% and above. These devices benefit from the suppression of free charge recombination with regard to the Langevin limit of charge encounter in a homogeneous medium. It is recognized that the main cause of suppressed free charge recombination is the reformation and resplitting of charge-transfer (CT) states at the interface between donor and acceptor domains. Here, we use kinetic Monte Carlo simulations to understand the interplay between free charge motion and recombination in an energetically disordered phase-separated donor-acceptor blend. We identify conditions for encounter-dominated and resplitting-dominated recombination. In the former regime, recombination is proportional to mobility for all parameters tested and only slightly reduced with respect to the Langevin limit. In contrast, mobility is not the decisive parameter that determines the nongeminate recombination coefficient, k(2), in the latter case, where k2 is a sole function of the morphology, CT and charge-separated (CS) energetics, and CT-state decay properties. Our simulations also show that free charge encounter in the phase-separated disordered blend is determined by the average mobility of all carriers, while CT reformation and resplitting involves mostly states near the transport energy. Therefore, charge encounter is more affected by increased disorder than the resplitting of the CT state. As a consequence, for a given mobility, larger energetic disorder, in combination with a higher hopping rate, is preferred. These findings have implications for the understanding of suppressed recombination in solar cells with nonfullerene acceptors, which are known to exhibit lower energetic disorder than that of fullerenes.}, language = {en} } @article{ZunkovicProsen2010, author = {Zunkovic, Bojan and Prosen, Tomaz}, title = {Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain}, issn = {1742-5468}, doi = {10.1088/1742-5468/2010/08/P08016}, year = {2010}, abstract = {Explicit solution for the two-point correlation function in a non-equilibrium steady state of a nearly isotropic boundary driven open XY spin 1/2 chain in the Lindblad formulation is provided. A non-equilibrium quantum phase transition from exponentially decaying correlations to long range order is discussed analytically. In the regime of long range order a new phenomenon of correlation resonances is reported, where the correlation response of the system is unusually high for certain discrete values of the external bulk parameter, e.g. the magnetic field.}, language = {en} } @article{ZuWolffRalaiarisoaetal.2019, author = {Zu, Fengshuo and Wolff, Christian Michael and Ralaiarisoa, Maryline and Amsalem, Patrick and Neher, Dieter and Koch, Norbert}, title = {Unraveling the Electronic Properties of Lead Halide Perovskites with Surface Photovoltage in Photoemission Studies}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b05293}, pages = {21578 -- 21583}, year = {2019}, abstract = {The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites' photophysical properties.}, language = {en} }