@article{SinghCompartALRawietal.2022, author = {Singh, Aakanksha and Compart, Julia and AL-Rawi, Shadha Abduljaleel and Mahto, Harendra and Ahmad, Abubakar Musa and Fettke, J{\"o}rg}, title = {LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.15855}, pages = {819 -- 835}, year = {2022}, abstract = {For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38\% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.}, language = {en} } @article{MalinovaMahtoBrandtetal.2018, author = {Malinova, Irina and Mahto, Harendra and Brandt, Felix and AL-Rawi, Shadha and Qasim, Hadeel and Brust, Henrike and Hejazi, Mahdi and Fettke, J{\"o}rg}, title = {EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13937}, pages = {126 -- 137}, year = {2018}, abstract = {Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.}, language = {en} } @article{MediniFarhatAlRawietal.2019, author = {Medini, Wided and Farhat, Nejia and Al-Rawi, Shadha and Mahto, Harendra and Qasim, Hadeel and Ben-Halima, Emna and Bessrour, Mouna and Chibani, Farhat and Abdelly, Chedly and Fettke, J{\"o}rg and Rabhi, Mokded}, title = {Do carbohydrate metabolism and partitioning contribute to the higher salt tolerance of Hordeum marinum compared to Hordeum vulgare?}, series = {Acta Physiologiae Plantarum}, volume = {41}, journal = {Acta Physiologiae Plantarum}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {0137-5881}, doi = {10.1007/s11738-019-2983-x}, pages = {12}, year = {2019}, abstract = {The aim of the present work was to check whether carbohydrate metabolism and partitioning contribute to the higher salt tolerance of the facultative halophyte Hordeum marinum compared to the glycophyte Hordeum vulgare. Seedlings with the same size from the two species were hydroponically grown at 0 (control), 150, and 300 mM NaCl for 3 weeks. H. marinum maintained higher relative growth rate, which was concomitant with a higher aptitude to maintain better shoot tissue hydration and membrane integrity under saline conditions compared to H. vulgare. Gas exchanges were reduced in the two species under saline conditions, but an increase in their water use efficiency was recorded. H. marinum exhibited an increase in leaf soluble sugar concentrations under saline conditions together with an enhancement in the transglucosidase DPE2 (EC 2.4.1.25) activity at 300 mM NaCl. However, H. vulgare showed a high increase in starch phosphorylase (EC 2.4.1.1) activity under saline conditions together with a decrease in leaf glucose and starch concentrations at 300 mM NaCl. In roots, both species accumulated glucose and fructose at 150 mM NaCl, but H. marinum exhibited a marked decrease in soluble sugar concentrations and an increase in starch concentration at 300 mM NaCl. Our data constitute an initiation to the involvement of carbohydrate metabolism and partitioning in salt responses of barley species and further work is necessary to elucidate how their flexibility confers higher tolerance to H. marinum compared to H. vulgare.}, language = {en} }