@article{HaegeleSchlagenhaufRappetal.2015, author = {Haegele, Claudia and Schlagenhauf, Florian and Rapp, Michael A. and Sterzer, Philipp and Beck, Anne and Bermpohl, Felix and Stoy, Meline and Stroehle, Andreas and Wittchen, Hans-Ulrich and Dolan, Raymond J. and Heinz, Andreas}, title = {Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders}, series = {Psychopharmacology}, volume = {232}, journal = {Psychopharmacology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0033-3158}, doi = {10.1007/s00213-014-3662-7}, pages = {331 -- 341}, year = {2015}, abstract = {A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities.}, language = {en} } @article{DesernoBeckHuysetal.2015, author = {Deserno, Lorenz and Beck, Anne and Huys, Quentin J. M. and Lorenz, Robert C. and Buchert, Ralph and Buchholz, Hans-Georg and Plotkin, Michail and Kumakara, Yoshitaka and Cumming, Paul and Heinze, Hans-Jochen and Grace, Anthony A. and Rapp, Michael A. and Schlagenhauf, Florian and Heinz, Andreas}, title = {Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum}, series = {European journal of neuroscience}, volume = {41}, journal = {European journal of neuroscience}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0953-816X}, doi = {10.1111/ejn.12802}, pages = {477 -- 486}, year = {2015}, abstract = {Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug-related stimuli towards drug-related stimuli. Such hijacked' dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N=27). All participants also underwent 6-[F-18]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long-term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake.}, language = {en} } @article{WiebkingdeGreckDuncanetal.2015, author = {Wiebking, Christine and de Greck, Moritz and Duncan, Niall W. and Tempelmann, Claus and Bajbouj, Malek and Northoff, Georg}, title = {Interoception in insula subregions as a possible state marker for depression - an exploratory fMRI study investigating healthy, depressed and remitted participants}, series = {Frontiers in behavioral neuroscience}, volume = {9}, journal = {Frontiers in behavioral neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2015.00082}, pages = {33}, year = {2015}, abstract = {Background: Interoceptive awareness, the awareness of stimuli originating inside the body, plays an important role in human emotions and psychopathology. The insula is particularly involved in neural processes underlying iA. However, iA-related neural activity in the insula during the acute state of major depressive disorder (MDD) and in remission from depression has not been explored. Methods: A well-established fMRI paradigm for studying interoceptive awareness (iA; heartbeat counting) and exteroceptive awareness (eA; tone counting) was used. Study participants formed three independent groups: patients suffering from MDD, patients in remission from MDD or healthy controls. Task-induced neural activity in three functional subdivisions of the insula was compared between these groups. Results: Depressed participants showed neural hypo-responses during iA in anterior insula regions, as compared to both healthy and remitted participants. The right dorsal anterior insula showed the strongest response to iA across all participant groups. In depressed participants there was no differentiation between different stimuli types in this region (i.e., between iA, eA and noTask). Healthy and remitted participants in contrast showed clear activity differences. Conclusions: This is the first study comparing iA and eA-related activity in the insula in depressed participants to that in healthy and remitted individuals. The preliminary results suggest that these groups differ in there being hypo-responses across insula regions in the depressed participants, whilst healthy participants and patients in remission from MDD show the same neural activity during iA in insula subregions implying a possible state marker for MDD. The lack of activity differences between different stimulus types in the depressed group may account for their symptoms of altered external and internal focus.}, language = {en} } @article{HolzBuchmannBoeckerSchlieretal.2015, author = {Holz, Nathalie E. and Buchmann, Arlette F. and Boecker-Schlier, Regina and Blomeyer, Dorothea and Baumeister, Sarah and Wolf, Isabella and Rietschel, Marcella and Witt, Stephanie H. and Plichta, Michael M. and Meyer-Lindenberg, Andreas and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Role of FKBP5 in emotion processing: results on amygdala activity, connectivity and volume}, series = {Brain structure \& function}, volume = {220}, journal = {Brain structure \& function}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1863-2653}, doi = {10.1007/s00429-014-0729-5}, pages = {1355 -- 1368}, year = {2015}, abstract = {Accumulating evidence suggests a role of FKBP5, a co-chaperone regulating the glucocorticoid receptor sensitivity, in the etiology of depression and anxiety disorders. Based on recent findings of altered amygdala activity following childhood adversity, the present study aimed at clarifying the impact of genetic variation in FKBP5 on threat-related neural activity and coupling as well as morphometric alterations in stress-sensitive brain systems. Functional magnetic resonance imaging during an emotional face-matching task was performed in 153 healthy young adults (66 males) from a high-risk community sample followed since birth. Voxel-based morphometry was applied to study structural alterations and DNA was genotyped for FKBP5 rs1360780. Childhood adversity was measured using retrospective self-report (Childhood Trauma Questionnaire) and by a standardized parent interview assessing childhood family adversity. Depression was assessed by the Beck Depression Inventory. There was a main effect of FKBP5 on the left amygdala, with T homozygotes showing the highest activity, largest volume and increased coupling with the left hippocampus and the orbitofrontal cortex (OFC). Moreover, amygdala-OFC coupling proved to be associated with depression in this genotype. In addition, our results support previous evidence of a gene-environment interaction on right amygdala activity with respect to retrospective assessment of childhood adversity, but clarify that this does not generalize to the prospective assessment. These findings indicated that activity in T homozygotes increased with the level of adversity, whereas the opposite pattern emerged in C homozygotes, with CT individuals being intermediate. The present results point to a functional involvement of FKBP5 in intermediate phenotypes associated with emotional processing, suggesting a possible mechanism for this gene in conferring susceptibility to stress-related disorders.}, language = {en} } @article{WiebkingNorthoff2015, author = {Wiebking, Christine and Northoff, Georg}, title = {Neural activity during interoceptive awareness and its associations with alexithymia-An fMRI study in major depressive disorder and non-psychiatric controls}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00589}, pages = {16}, year = {2015}, abstract = {Objective: Alexithymia relates to difficulties recognizing and describing emotions. It has been linked to subjectively increased interoceptive awareness (IA) and to psychiatric illnesses such as major depressive disorder (MDD) and somatization. MDD in turn is characterized by aberrant emotion processing and IA on the subjective as well as on the neural level. However, a link between neural activity in response to IA and alexithymic traits in health and depression remains unclear. Methods: A well-established fMRI task was used to investigate neural activity during IA (heartbeat counting) and exteroceptive awareness (tone counting) in non-psychiatric controls (NC) and MDD. Firstly, comparing MDD and NC, a linear relationship between IA-related activity and scores of the Toronto Alexithymia Scale (TAS) was investigated through whole-brain regression. Secondly, NC were divided by median-split of TAS scores into groups showing low (NC-low) or high (NC-high) alexithymia. MDD and NC-high showed equally high TAS scores. Subsequently, IA-related neural activity was compared on a whole-brain level between the three independent samples (MDD, NC-low, NC-high). Results: Whole-brain regressions between MDD and NC revealed neural differences during IA as a function of TAS-DD (subscale difficulty describing feelings) in the supragenual anterior cingulate cortex (sACC; BA 24/32), which were due to negative associations between TAS-DD and IA-related activity in NC. Contrasting NC subgroups after median-split on a whole-brain level, high TAS scores were associated with decreased neural activity during IA in the sACC and increased insula activity. Though having equally high alexithymia scores, NC-high showed increased insula activity during IA compared to MDD, whilst both groups showed decreased activity in the sACC. Conclusions: Within the context of decreased sACC activity during IA in alexithymia (NC-high and MDD), increased insula activity might mirror a compensatory mechanism in NC-high, which is disrupted in MDD.}, language = {en} } @article{WiebkingNorthoff2015, author = {Wiebking, Christine and Northoff, Georg}, title = {Neural activity during interoceptive awareness and its associations with alexithymia}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, number = {589}, publisher = {Frontiers Research Foundation}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00589}, year = {2015}, abstract = {Objective: Alexithymia relates to difficulties recognizing and describing emotions. It has been linked to subjectively increased interoceptive awareness (IA) and to psychiatric illnesses such as major depressive disorder (MDD) and somatization. MDD in turn is characterized by aberrant emotion processing and IA on the subjective as well as on the neural level. However, a link between neural activity in response to IA and alexithymic traits in health and depression remains unclear. Methods: A well-established fMRI task was used to investigate neural activity during IA (heartbeat counting) and exteroceptive awareness (tone counting) in non-psychiatric controls (NC) and MDD. Firstly, comparing MDD and NC, a linear relationship between IA-related activity and scores of the Toronto Alexithymia Scale (TAS) was investigated through whole-brain regression. Secondly, NC were divided by median-split of TAS scores into groups showing low (NC-low) or high (NC-high) alexithymia. MDD and NC-high showed equally high TAS scores. Subsequently, IA-related neural activity was compared on a whole-brain level between the three independent samples (MDD, NC-low, NC-high). Results: Whole-brain regressions between MDD and NC revealed neural differences during IA as a function of TAS-DD (subscale difficulty describing feelings) in the supragenual anterior cingulate cortex (sACC; BA 24/32), which were due to negative associations between TAS-DD and IA-related activity in NC. Contrasting NC subgroups after median-split on a whole-brain level, high TAS scores were associated with decreased neural activity during IA in the sACC and increased insula activity. Though having equally high alexithymia scores, NC-high showed increased insula activity during IA compared to MDD, whilst both groups showed decreased activity in the sACC. Conclusions: Within the context of decreased sACC activity during IA in alexithymia (NC-high and MDD), increased insula activity might mirror a compensatory mechanism in NC-high, which is disrupted in MDD.}, language = {en} } @article{WiebkingdeGreckDuncanetal.2015, author = {Wiebking, Christine and de Greck, Moritz and Duncan, Niall W. and Tempelmann, Claus and Bajbouj, Malek and Northoff, Georg}, title = {Interoception in insula subregions as a possible state marker for depression}, series = {Frontiers in behavioral neuroscience}, journal = {Frontiers in behavioral neuroscience}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2015.00082}, pages = {14}, year = {2015}, abstract = {Background: Interoceptive awareness (iA), the awareness of stimuli originating inside the body, plays an important role in human emotions and psychopathology. The insula is particularly involved in neural processes underlying iA. However, iA-related neural activity in the insula during the acute state of major depressive disorder (MDD) and in remission from depression has not been explored. Methods: A well-established fMRI paradigm for studying (iA; heartbeat counting) and exteroceptive awareness (eA; tone counting) was used. Study participants formed three independent groups: patients suffering from MDD, patients in remission from MDD or healthy controls. Task-induced neural activity in three functional subdivisions of the insula was compared between these groups. Results: Depressed participants showed neural hypo-responses during iA in anterior insula regions, as compared to both healthy and remitted participants. The right dorsal anterior insula showed the strongest response to iA across all participant groups. In depressed participants there was no differentiation between different stimuli types in this region (i.e., between iA, eA and noTask). Healthy and remitted participants in contrast showed clear activity differences. Conclusions: This is the first study comparing iA and eA-related activity in the insula in depressed participants to that in healthy and remitted individuals. The preliminary results suggest that these groups differ in there being hypo-responses across insula regions in the depressed participants, whilst non-psychiatric participants and patients in remission from MDD show the same neural activity during iA in insula subregions implying a possible state marker for MDD. The lack of activity differences between different stimulus types in the depressed group may account for their symptoms of altered external and internal focus.}, language = {en} }