@article{ElsnerUllmannHeueretal.2012, author = {Elsner, Robert and Ullmann, Roland and Heuer, Axel and Menzel, Ralf and Ostermeyer, Martin}, title = {Two-dimensional modeling of transient gain gratings in saturable gain media}, series = {OPTICS EXPRESS}, volume = {20}, journal = {OPTICS EXPRESS}, number = {7}, publisher = {OPTICAL SOC AMER}, address = {WASHINGTON}, issn = {1094-4087}, doi = {10.1364/OE.20.006887}, pages = {6887 -- 6896}, year = {2012}, abstract = {A transient two-dimensional model describing degenerate four-wave mixing inside saturable gain media is presented. The new model is compared to existing one-dimensional models with their qualitative results confirmed. Large quantitative differences with respect to peak reflectivity and optimum pump fluence are observed. Furthermore, the influence of the beam focus size, the transverse position and the crossing angle on the reflectivity of the grating is investigated using the improved model. It is demonstrated that the phase conjugate reflectivity depends sensitively on the transverse features of the interacting beams with a transverse shift in the position of the pump beams yielding a threefold improvement in reflectivity. (C) 2012 Optical Society of America}, language = {en} } @article{OstermeyerKornPuhlmannetal.2009, author = {Ostermeyer, Martin and Korn, Dietmar and Puhlmann, Dirk and Henkel, Carsten and Eisert, Jens}, title = {Two-dimensional characterization of spatially entangled photon pairs}, issn = {0950-0340}, doi = {10.1080/09500340903359962}, year = {2009}, abstract = {We characterize the entanglement in position and momentum of photon pairs generated in type-II parametric down- conversion. Coincidence maps of the photon positions in the near-field and far-field planes are observed in two transverse dimensions using scanning fiber probes. We estimate the covariance matrix of an effective two-mode system and apply criteria for entanglement based on covariance matrices to certify space-momentum entanglement. The role of higher- order spatial modes for observing spatial entanglement between the two photons is discussed.}, language = {en} } @article{OstermeyerLorenzHodgsonetal.1997, author = {Ostermeyer, Martin and Lorenz, Dieter and Hodgson, N. and Menzel, Ralf}, title = {Transverse Modes in Laser Resonators with Phase Conjugating Mirror Based on Stimulated Brillouin Scattering (SBS)}, year = {1997}, language = {en} } @article{OstermeyerMudgeVeitchetal.2006, author = {Ostermeyer, Martin and Mudge, Damien and Veitch, Peter John and Munch, Jesper}, title = {Thermally induced birefringence in Nd : YAG slab lasers}, doi = {10.1364/AO.45.005368}, year = {2006}, abstract = {We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.}, language = {en} } @article{HeuerHodgsonLorenzetal.1997, author = {Heuer, Axel and Hodgson, N. and Lorenz, Dieter and Ostermeyer, Martin and Menzel, Ralf}, title = {Solid state lasers with high brightness via optical phase conjugation for micromachining}, year = {1997}, language = {en} } @article{OstermeyerHeuerWatermannetal.1996, author = {Ostermeyer, Martin and Heuer, Axel and Watermann, V. and Menzel, Ralf}, title = {Single rod Nd:laser with phase conjugating SBS-mirror and large transversal mode for average output powers above 20 Watts}, year = {1996}, language = {en} } @article{OstermeyerMenzel1999, author = {Ostermeyer, Martin and Menzel, Ralf}, title = {Single rod efficient Nd:YAG and Nd:YALO-lasers with average output powers of 46 and 47 W in diffraction limited beams with M2 < 1.2 and 100 W with M2 < 3.7}, year = {1999}, language = {en} } @article{OstermeyerHeuerWatermannetal.1996, author = {Ostermeyer, Martin and Heuer, Axel and Watermann, V. and Menzel, Ralf}, title = {Resonators with phase conjugating SBS-mirror for solid state lasers with high output powers}, year = {1996}, language = {en} } @article{OstermeyerKlemzKubinaetal.2002, author = {Ostermeyer, Martin and Klemz, Guido and Kubina, P. and Menzel, Ralf}, title = {Quasi-continuous-wave birefringence-compensated single- and double-rod Nd : YAG lasers}, year = {2002}, language = {en} } @article{OstermeyerPuhlmannKorn2009, author = {Ostermeyer, Martin and Puhlmann, Dirk and Korn, Dietmar}, title = {Quantum diffraction of biphotons at a blazed grating}, issn = {0740-3224}, year = {2009}, abstract = {Correlations between photons are interesting for a number of applications and concepts in metrology, in particular for resolution improvements in different methods of quantum imaging. We demonstrate the application of a blazed grating for the characterization of the degree of spatial correlation of biphotons. The biphotons are generated by type II parametric downconversion. Compared to an ordinary transmission grating, a blazed grating shows a high diffraction efficiency only for a single order of diffraction. Thus, higher intensities in the Fraunhofer far field behind the grating, and easier photon counting, can be achieved. The distribution of the two-photon rate in the Fraunhofer far field of the blazed grating can show one additional order of diffraction with a visibility related to the degree of correlation of the biphotons. The number of spatial modes that are populated by the biphoton beam can be directly altered in our experiments. The relation of the spatial mode order of the photon propagation to the observable degree of spatial correlation of the biphotons is investigated and related to the Schmidt number of spatially entangled modes.}, language = {en} }