@article{BragaAnchietadeCarvalhoBrosinskyetal.2019, author = {Braga, Brennda and Anchieta de Carvalho, Thayslan Renato and Brosinsky, Arlena and F{\"o}rster, Saskia and Medeiros, Pedro Henrique Augusto}, title = {From waste to resource}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {670}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2019.03.083}, pages = {158 -- 169}, year = {2019}, abstract = {Reservoir networks have been established worldwide to ensure water supply, but water availability is endangered quantitatively and qualitatively by sedimentation. Reuse of sediment silted in reservoirs as fertilizer has been proposed, thus transforming nutrient-enriched sediments from waste into resource. The aim of this study is to assess the potential of reusing sediment as a nutrient source for agriculture a semiarid basin in Brazil. where 1029 reservoirs were identified. Sedimentation was modelled for the entire reservoir network, accounting for 7 x 10(5) tons of y(-1)sediment deposition. Nutrients contents in reservoir sediments was analysed and com- pared to nutrients contents of agricultural soils in the catchment. The potential of reusing sediment as fertilizer was assessed for maize crops (Zea mays L) and the sediment mass required to fertilize the soil was computed considering that the crop nitrogen requirement would be fully provided by the sediment. Economic feasibility was analysed by comparing the costs of the proposed practice to those obtained if the area was fertilized by traditional means. Results showed that, where reservoirs fall dry frequently and sediments can be removed by excavation, soil fertilization with sediment presents lower costs than those observed for application of commercial chemical fertilizers. Compared to conventional fertilization, when using sediments with high nutrient content, 25\% of costs could be saved, while when using sediments with low nutrient content costs are 9\% higher. According to the local conditions, sediments with nitrogen content above 1.5 g kg(-1) are cost efficient as nitrogen source. However, physical and chemical analyses are recommended to define the sediment mass to be used and to identify any constraint to the application of the practice, like the high sodium adsorption ratio observed in one of the studied reservoirs, which can contribute to soil salinization. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{GaertnerNottebrockFourieetal.2012, author = {G{\"a}rtner, Mirijam and Nottebrock, Henning and Fourie, Helanya and Privett, Sean D. J. and Richardson, David M.}, title = {Plant invasions, restoration, and economics perspectives from South African fynbos}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {14}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {5}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2012.05.001}, pages = {341 -- 353}, year = {2012}, abstract = {Restoration is gaining importance in the management of plant invasions. As the success of restoration projects is frequently determined by factors other than ecological ones, we explored the ecological and financial feasibility of active restoration on three different invaded sites in South Africa's Cape Floristic Region. The aim of our study was to identify cost-effective ways of restoring functional native ecosystems following invasion by alien plants. Over three years we evaluated different restoration approaches using field trials and experimental manipulations (i.e. mechanical clearing, burning, different soil restoration techniques and sowing of native species) to reduce elevated soil nutrient levels and to re-establish native fynbos communities. Furthermore we investigated the possibility of introducing native fynbos species that can be used for sustainable harvesting to create an incentive for restoration on private land. Diversity and evenness of native plant species increased significantly after restoration at all three sites, whereas cover of alien plants decreased significantly, confirming that active restoration was successful. However, sowing of native fynbos species had no significant effect on native cover, species richness, diversity or evenness in the Acacia thicket and Kikuyu field, implying that the ecosystem was sufficiently resilient to allow autogenic recovery following clearing and burning of the invasive species. Soil restoration treatments resulted in an increase of available nitrogen in the Acacia thicket, but had no significant effects in the Eucalyptus plantation. However, despite elevated available soil nitrogen levels, native species germinated irrespective whether sown or unsown (i.e. regeneration from the soil seed bank). Without active introduction of native species, native grasses, forbs and other shrubs would have dominated, and proteoids and ericoids (the major fynbos growth forms) would have been under-represented. The financial analysis shows that income from flower harvesting following active restoration consistently outweighs income following passive restoration, but that the associated increase in income does not always justify the higher costs. We conclude that active restoration can be effective and financially feasible when compared to passive restoration, depending on the density of invasion. Active restoration of densely invaded sites may therefore only be justifiable if the target area is in a region of high conservation priority.}, language = {en} }