@article{OlenBookhagen2020, author = {Olen, Stephanie M. and Bookhagen, Bodo}, title = {Applications of SAR interferometric coherence time series}, series = {Journal of geophysical research : Earth surface}, volume = {125}, journal = {Journal of geophysical research : Earth surface}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2019JF005141}, pages = {22}, year = {2020}, abstract = {Sediment transport domains in mountain landscapes are characterized by fundamentally different processes and rates depending on several factors, including geology, climate, and biota. Accurately identifying where transitions between transport domains occur is an important step to quantify the past, present, and future contribution of varying erosion and sedimentation processes and enhance our predictive capabilities. We propose a new methodology based on time series of synthetic aperture radar (SAR) interferometric coherence images to map sediment transport regimes across arid and semiarid landscapes. Using 4 years of Sentinel-1 data, we analyze sediment transport regimes for the south-central Andes in northwestern Argentina characterized by steep topographic and climatic gradients. We observe seasonally low coherence during the regional wet season, particularly on hillslopes and in alluvial channels. The spatial distribution of coherence is compared to drainage areas extracted from digital topography to identify two distinct transitions within watersheds: (a) a hillslope-to-fluvial and (b) a fluvial-to-alluvial transition. While transitions within a given basin can be well-constrained, the relative role of each sediment transport domain varies widely over the climatic and topographic gradients. In semiarid regions, we observe larger relative contributions from hillslopes compared to arid regions. Across regional gradients, the range of coherence within basins positively correlates to previously published millennial catchment-wide erosion rates and to topographic metrics used to indicate long-term uplift. Our study suggests that a dense time series of interferometric coherence can be used as a proxy for surface sediment movement and landscape stability in vegetation-free settings at event to decadal timescales.}, language = {en} } @article{MerzKuhlickeKunzetal.2020, author = {Merz, Bruno and Kuhlicke, Christian and Kunz, Michael and Pittore, Massimiliano and Babeyko, Andrey and Bresch, David N. and Domeisen, Daniela I. and Feser, Frauke and Koszalka, Inga and Kreibich, Heidi and Pantillon, Florian and Parolai, Stefano and Pinto, Joaquim G. and Punge, Heinz J{\"u}rgen and Rivalta, Eleonora and Schr{\"o}ter, Kai and Strehlow, Karen and Weisse, Ralf and Wurpts, Andreas}, title = {Impact forecasting to support emergency management of natural hazards}, series = {Reviews of geophysics}, volume = {58}, journal = {Reviews of geophysics}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {8755-1209}, doi = {10.1029/2020RG000704}, pages = {52}, year = {2020}, abstract = {Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe.}, language = {en} } @article{ReilImholtRosenfeldetal.2017, author = {Reil, Daniela and Imholt, Christian and Rosenfeld, Ulrike M. and Drewes, Stephan and Fischer, S. and Heuser, Emil and Petraityte-Burneikiene, Rasa and Ulrich, R. G. and Jacob, J.}, title = {Validation of the Puumala virus rapid field test for bank voles in Germany}, series = {Epidemiology and infection}, volume = {145}, journal = {Epidemiology and infection}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0950-2688}, doi = {10.1017/S0950268816002557}, pages = {434 -- 439}, year = {2017}, abstract = {Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Wurttemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95\%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.}, language = {en} } @article{RoezerMuellerBubecketal.2016, author = {R{\"o}zer, Viktor and M{\"u}ller, Meike and Bubeck, Philip and Kienzler, Sarah and Thieken, Annegret and Pech, Ina and Schr{\"o}ter, Kai and Buchholz, Oliver and Kreibich, Heidi}, title = {Coping with Pluvial Floods by Private Households}, series = {Water}, volume = {8}, journal = {Water}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w8070304}, pages = {24}, year = {2016}, abstract = {Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.}, language = {en} }