@article{RamezaniZiaraniBookhagenSchmidtetal.2021, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Deng, Zhiguo and Calori, Andrea}, title = {A model for the relationship between rainfall, GNSS-derived integrated water vapour, and CAPE in the eastern central Andes}, series = {Remote Sensing}, volume = {13}, journal = {Remote Sensing}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs13183788}, pages = {19}, year = {2021}, abstract = {Atmospheric water vapour content is a key variable that controls the development of deep convective storms and rainfall extremes over the central Andes. Direct measurements of water vapour are challenging; however, recent developments in microwave processing allow the use of phase delays from L-band radar to measure the water vapour content throughout the atmosphere: Global Navigation Satellite System (GNSS)-based integrated water vapour (IWV) monitoring shows promising results to measure vertically integrated water vapour at high temporal resolutions. Previous works also identified convective available potential energy (CAPE) as a key climatic variable for the formation of deep convective storms and rainfall in the central Andes. Our analysis relies on GNSS data from the Argentine Continuous Satellite Monitoring Network, Red Argentina de Monitoreo Satelital Continuo (RAMSAC) network from 1999 to 2013. CAPE is derived from version 2.0 of the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-interim) and rainfall from the TRMM (Tropical Rainfall Measuring Mission) product. In this study, we first analyse the rainfall characteristics of two GNSS-IWV stations by comparing their complementary cumulative distribution function (CCDF). Second, we separately derive the relation between rainfall vs. CAPE and GNSS-IWV. Based on our distribution fitting analysis, we observe an exponential relation of rainfall to GNSS-IWV. In contrast, we report a power-law relationship between the daily mean value of rainfall and CAPE at the GNSS-IWV station locations in the eastern central Andes that is close to the theoretical relationship based on parcel theory. Third, we generate a joint regression model through a multivariable regression analysis using CAPE and GNSS-IWV to explain the contribution of both variables in the presence of each other to extreme rainfall during the austral summer season. We found that rainfall can be characterised with a higher statistical significance for higher rainfall quantiles, e.g., the 0.9 quantile based on goodness-of-fit criterion for quantile regression. We observed different contributions of CAPE and GNSS-IWV to rainfall for each station for the 0.9 quantile. Fourth, we identify the temporal relation between extreme rainfall (the 90th, 95th, and 99th percentiles) and both GNSS-IWV and CAPE at 6 h time steps. We observed an increase before the rainfall event and at the time of peak rainfall—both for GNSS-integrated water vapour and CAPE. We show higher values of CAPE and GNSS-IWV for higher rainfall percentiles (99th and 95th percentiles) compared to the 90th percentile at a 6-h temporal scale. Based on our correlation analyses and the dynamics of the time series, we show that both GNSS-IWV and CAPE had comparable magnitudes, and we argue to consider both climatic variables when investigating their effect on rainfall extremes.}, language = {en} } @article{MelnickLiMorenoetal.2018, author = {Melnick, Daniel and Li, Shaoyang and Moreno, Marcos and Cisternas, Marco and Jara Mu{\~n}oz, Julius and Wesson, Robert and Nelson, Alan and Baez, Juan Carlos and Deng, Zhiguo}, title = {Back to full interseismic plate locking decades after the giant 1960 Chile earthquake}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05989-6}, pages = {10}, year = {2018}, abstract = {Great megathrust earthquakes arise from the sudden release of energy accumulated during centuries of interseismic plate convergence. The moment deficit (energy available for future earthquakes) is commonly inferred by integrating the rate of interseismic plate locking over the time since the previous great earthquake. But accurate integration requires knowledge of how interseismic plate locking changes decades after earthquakes, measurements not available for most great earthquakes. Here we reconstruct the post-earthquake history of plate locking at Guafo Island, above the seismogenic zone of the giant 1960 (M-w = 9.5) Chile earthquake, through forward modeling of land-level changes inferred from aerial imagery (since 1974) and measured by GPS (since 1994). We find that interseismic locking increased to similar to 70\% in the decade following the 1960 earthquake and then gradually to 100\% by 2005. Our findings illustrate the transient evolution of plate locking in Chile, and suggest a similarly complex evolution elsewhere, with implications for the time- and magnitude-dependent probability of future events.}, language = {en} } @article{MelnickMorenoQuinterosetal.2017, author = {Melnick, Daniel and Moreno, Marcos and Quinteros, Javier and Carlos Baez, Juan and Deng, Zhiguo and Li, Shaoyang and Oncken, Onno}, title = {The super-interseismic phase of the megathrust earthquake cycle in Chile}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071845}, pages = {784 -- 791}, year = {2017}, abstract = {Along a subduction zone, great megathrust earthquakes recur either after long seismic gaps lasting several decades to centuries or over much shorter periods lasting hours to a few years when cascading successions of earthquakes rupture nearby segments of the fault. We analyze a decade of continuous Global Positioning System observations along the South American continent to estimate changes in deformation rates between the 2010 Maule (M8.8) and 2015 Illapel (M8.3) Chilean earthquakes. We find that surface velocities increased after the 2010 earthquake, in response to continental-scale viscoelastic mantle relaxation and to regional-scale increased degree of interplate locking. We propose that increased locking occurs transiently during a super-interseismic phase in segments adjacent to a megathrust rupture, responding to bending of both plates caused by coseismic slip and subsequent afterslip. Enhanced strain rates during a super-interseismic phase may therefore bring a megathrust segment closer to failure and possibly triggered the 2015 event.}, language = {en} }