@article{HabelUlrichEberleetal.2022, author = {Habel, Jan Christian and Ulrich, Werner and Eberle, Jonas and Schmitt, Thomas}, title = {Species community structures of Afrotropical butterflies differ depending on the monitoring method}, series = {Biodiversity and conservation}, volume = {31}, journal = {Biodiversity and conservation}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-021-02332-2}, pages = {245 -- 259}, year = {2022}, abstract = {Standardised biodiversity assessment is crucial to understand community structures and population dynamics of animals. There exist various methods to monitor biodiversity. Approaches differ depending on the target species group and the aim of study, and show advantages and disadvantages. The obtained data and results are influenced by local environmental conditions and seasonal variability. In a comparative approach, we studied butterfly diversity and community structure in the dryland savannah biome of south-eastern Kenya with two different methods, transect counts and bait trapping. We repeatedly collected data throughout the dry and rainy seasons, in both near natural and anthropogenically influenced landscapes. Significantly more species and individuals were recorded by transect counts than by bait trapping, though the larger and more mobile Nymphalid species (and in particular representatives of the genus Charaxes) were comparatively overrepresented in traps. The transect data revealed much more pronounced effects of land-use and seasonality than the trap data. These results show that the choice of data collection methods must depend on the general research question, habitat conditions and season. To study the relative variation of species diversity and abundance, the collection of a fraction of the total species diversity might be sufficient. However, if the focus is on a largely complete recording of species diversity, the use of various collection methods is essential. More specifically, our data clearly demonstrate that transect counts represent a reasonable method for assessing butterfly diversity for the African dryland savannah region, but fails to fully capture occurrences of all species. Bait trapping can be used only as a supplementary method for assessing some few highly mobile low-density species.}, language = {en} } @article{MbebiBreitlerBordeauxetal.2022, author = {Mbebi, Alain J. and Breitler, Jean-Christophe and Bordeaux, M'elanie and Sulpice, Ronan and McHale, Marcus and Tong, Hao and Toniutti, Lucile and Castillo, Jonny Alonso and Bertrand, Benoit and Nikoloski, Zoran}, title = {A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids}, series = {G3: Genes, genomes, genetics}, volume = {12}, journal = {G3: Genes, genomes, genetics}, number = {9}, publisher = {Genetics Soc. of America}, address = {Pittsburgh, PA}, issn = {2160-1836}, doi = {10.1093/g3journal/jkac170}, pages = {11}, year = {2022}, abstract = {Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.}, language = {en} } @article{HeimLisovskiWieczoreketal.2022, author = {Heim, Birgit and Lisovski, Simeon and Wieczorek, Mareike and Morgenstern, Anne and Juhls, Bennet and Shevtsova, Iuliia and Kruse, Stefan and Boike, Julia and Fedorova, Irina and Herzschuh, Ulrike}, title = {Spring snow cover duration and tundra greenness in the Lena Delta, Siberia}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {8}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac8066}, pages = {18}, year = {2022}, abstract = {The Lena Delta in Siberia is the largest delta in the Arctic and as a snow-dominated ecosystem particularly vulnerable to climate change. Using the two decades of MODerate resolution Imaging Spectroradiometer satellite acquisitions, this study investigates interannual and spatial variability of snow-cover duration and summer vegetation vitality in the Lena Delta. We approximated snow by the application of the normalized difference snow index and vegetation greenness by the normalized difference vegetation index (NDVI). We consolidated the analyses by integrating reanalysis products on air temperature from 2001 to 2021, and air temperature, ground temperature, and the date of snow-melt from time-lapse camera (TLC) observations from the Samoylov observatory located in the central delta. We extracted spring snow-cover duration determined by a latitudinal gradient. The 'regular year' snow-melt is transgressing from mid-May to late May within a time window of 10 days across the delta. We calculated yearly deviations per grid cell for two defined regions, one for the delta, and one focusing on the central delta. We identified an ensemble of early snow-melt years from 2012 to 2014, with snow-melt already starting in early May, and two late snow-melt years in 2004 and 2017, with snow-melt starting in June. In the times of TLC recording, the years of early and late snow-melt were confirmed. In the three summers after early snow-melt, summer vegetation greenness showed neither positive nor negative deviations. Whereas, vegetation greenness was reduced in 2004 after late snow-melt together with the lowest June monthly air temperature of the time series record. Since 2005, vegetation greenness is rising, with maxima in 2018 and 2021. The NDVI rise since 2018 is preceded by up to 4 degrees C warmer than average June air temperature. The ongoing operation of satellite missions allows to monitor a wide range of land surface properties and processes that will provide urgently needed data in times when logistical challenges lead to data gaps in land-based observations in the rapidly changing Arctic.}, language = {en} } @article{MontesOsunaCernavaGomezLamaCabanasetal.2022, author = {Montes-Osuna, Nuria and Cernava, Tomislav and Gomez-Lama Cabanas, Carmen and Berg, Gabriele and Mercado-Blanco, Jesus}, title = {Identification of volatile organic compounds emitted by two beneficial endophytic pseudomonas strains from olive roots}, series = {Plants}, volume = {11}, journal = {Plants}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2223-7747}, doi = {10.3390/plants11030318}, pages = {14}, year = {2022}, abstract = {The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is able to promote the growth of barley and Arabidopsis thaliana, VOCs being involved in the growth of the latter species. In this study, the antagonistic capacity of these endophytic bacteria against relevant phytopathogens (Verticillium spp., Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum f.sp. lycopersici) was assessed. Under in vitro conditions, PICF6 and PICF7 were only able to antagonize representative isolates of V. dahliae and V. longisporum. Remarkably, both strains produced an impressive portfolio of up to twenty VOCs, that included compounds with reported antifungal (e.g., 1-undecene, (methyldisulfanyl) methane and 1-decene) or plant growth promoting (e.g., tridecane, 1-decene) activities. Moreover, their volatilomes differed strongly in the absence and presence of V. dahliae. For example, when co incubated with the defoliating pathotype of V. dahliae, the antifungal compound 4-methyl-2,6-bis(2-methyl-2-propanyl)phenol was produced. Results suggest that volatiles emitted by these endophytes may differ in their modes of action, and that potential benefits for the host needs further investigation in planta.}, language = {en} } @article{MannaZoccaratoBanchietal.2022, author = {Manna, Vincenzo and Zoccarato, Luca and Banchi, Elisa and Arnosti, Carol and Grossart, Hans-Peter and Celussi, Mauro}, title = {Linking lifestyle and foraging strategies of marine bacteria}, series = {Environmental microbiology reports}, volume = {14}, journal = {Environmental microbiology reports}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.13059}, pages = {549 -- 558}, year = {2022}, abstract = {Microbe-mediated enzymatic hydrolysis of organic matter entails the production of hydrolysate, the recovery of which may be more or less efficient. The selfish uptake mechanism, recently discovered, allows microbes to hydrolyze polysaccharides and take up large oligomers, which are then degraded in the periplasmic space. By minimizing the hydrolysate loss, selfish behaviour may be profitable for free-living cells dwelling in a patchy substrate landscape. However, selfish uptake seems to be tailored to algal-derived polysaccharides, abundant in organic particles, suggesting that particle-attached microbes may use this strategy. We tracked selfish polysaccharides uptake in surface microbial communities of the northeastern Mediterranean Sea, linking the occurrence of this processing mode with microbial lifestyle. Additionally, we set up fluorescently labelled polysaccharides incubations supplying phytodetritus to investigate a 'pioneer' scenario for particle-attached microbes. Under both conditions, selfish behaviour was almost exclusively carried out by particle-attached microbes, suggesting that this mechanism may represent an advantage in the race for particle exploitation. Our findings shed light on the selfish potential of particle-attached microbes, suggesting multifaceted foraging strategies exerted by particle colonizers.}, language = {en} } @article{MinutilloRuanoRosaAbdelfattahetal.2022, author = {Minutillo, Serena A. and Ruano-Rosa, David and Abdelfattah, Ahmed and Schena, Leonardo and Malacrino, Antonino}, title = {The fungal microbiome of wheat flour includes potential mycotoxin producers}, series = {Foods}, volume = {11}, journal = {Foods}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods11050676}, pages = {9}, year = {2022}, abstract = {Consumers are increasingly demanding higher quality and safety standards for the products they consume, and one of this is wheat flour, the basis of a wide variety of processed products. This major component in the diet of many communities can be contaminated by microorganisms before the grain harvest, or during the grain storage right before processing. These microorganisms include several fungal species, many of which produce mycotoxins, secondary metabolites that can cause severe acute and chronic disorders. Yet, we still know little about the overall composition of fungal communities associated with wheat flour. In this study, we contribute to fill this gap by characterizing the fungal microbiome of different types of wheat flour using culture-dependent and -independent techniques. Qualitatively, these approaches suggested similar results, highlighting the presence of several fungal taxa able to produce mycotoxins. In-vitro isolation of fungal species suggest a higher frequency of Penicillium, while metabarcoding suggest a higher abundance of Alternaria. This discrepancy might reside on the targeted portion of the community (alive vs. overall) or in the specific features of each technique. Thus, this study shows that commercial wheat flour hosts a wide fungal diversity with several taxa potentially representing concerns for consumers, aspects that need more attention throughout the food production chain.}, language = {en} } @article{WassermannAbdelfattahWicaksonoetal.2022, author = {Wassermann, Birgit and Abdelfattah, Ahmed and Wicaksono, Wisnu Adi and Kusstatscher, Peter and M{\"u}ller, Henry and Cernava, Tomislav and Goertz, Simon and Rietz, Steffen and Abbadi, Amine and Berg, Gabriele}, title = {The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines}, series = {Microbial biotechnology}, volume = {15}, journal = {Microbial biotechnology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1751-7915}, doi = {10.1111/1751-7915.14077}, pages = {2379 -- 2390}, year = {2022}, abstract = {Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant-related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes.}, language = {en} } @article{DreymannWuenscheSabrowskietal.2022, author = {Dreymann, Nico and Wuensche, Julia and Sabrowski, Wiebke and Moeller, Anja and Czepluch, Denise and Vu Van, Dana and F{\"u}ssel, Susanne and Menger, Marcus M.}, title = {Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA}, series = {International journal of molecular sciences}, volume = {23}, journal = {International journal of molecular sciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1661-6596}, doi = {10.3390/ijms23094890}, pages = {22}, year = {2022}, abstract = {Urokinase-type plasminogen activator is widely discussed as a marker for cancer prognosis and diagnosis and as a target for cancer therapies. Together with its receptor, uPA plays an important role in tumorigenesis, tumor progression and metastasis. In the present study, systematic evolution of ligands by exponential enrichment (SELEX) was used to select single-stranded DNA aptamers targeting different forms of human uPA. Selected aptamers allowed the distinction between HMW-uPA and LMW-uPA, and therefore, presumably, have different binding regions. Here, uPAapt-02-FR showed highly affine binding with a K-D of 0.7 nM for HMW-uPA and 21 nM for LMW-uPA and was also able to bind to pro-uPA with a K-D of 14 nM. Furthermore, no cross-reactivity to mouse uPA or tissue-type plasminogen activator (tPA) was measured, demonstrating high specificity. Suppression of the catalytic activity of uPA and inhibition of uPAR-binding could be demonstrated through binding with different aptamers and several of their truncated variants. Since RNA aptamers are already known to inhibit uPA-uPAR binding and other pathological functions of the uPA system, these aptamers represent a novel, promising tool not only for detection of uPA but also for interfering with the pathological functions of the uPA system by additionally inhibiting uPA activity.}, language = {en} } @article{ZhangHuYangetal.2022, author = {Zhang, Kai and Hu, Jiege and Yang, Shuai and Xu, Wei and Wang, Zhichao and Zhuang, Peiwen and Grossart, Hans-Peter and Luo, Zhuhua}, title = {Biodegradation of polyester polyurethane by the marine fungus Cladosporium halotolerans 6UPA1}, series = {Journal of hazardous materials}, volume = {437}, journal = {Journal of hazardous materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3894}, doi = {10.1016/j.jhazmat.2022.129406}, pages = {10}, year = {2022}, abstract = {Lack of degradability and the accumulation of polymeric wastes increase the risk for the health of the environment. Recently, recycling of polymeric waste materials becomes increasingly important as raw materials for polymer synthesis are in short supply due to the rise in price and supply chain disruptions. As an important polymer, polyurethane (PU) is widely used in modern life, therefore, PU biodegradation is desirable to avoid its accumulation in the environment. In this study, we isolated a fungal strain Cladosporium halotolerans from the deep sea which can grow in mineral medium with a polyester PU (Impranil DLN) as a sole carbon source. Further, we demonstrate that it can degrade up to 80\% of Impranil PU after 3 days of incubation at 28 celcius by breaking the carbonyl groups (1732 cm(-1)) and C-N-H bonds (1532 cm(-1) and 1247 cm(-1)) as confirmed by Fourier-transform infrared (FTIR) spectroscopy analysis. Gas chromatography-mass spectrometry (GC-MS) analysis revealed polyols and alkanes as PU degradation intermediates, indicating the hydrolysis of ester and urethane bonds. Esterase and urease activities were detected in 7 days-old cultures with PU as a carbon source. Transcriptome analysis showed a number of extracellular protein genes coding for enzymes such as cutinase, lipase, peroxidase and hydrophobic surface binding proteins A (HsbA) were expressed when cultivated on Impranil PU. The yeast two-hybrid assay revealed that the hydrophobic surface binding protein ChHsbA1 directly interacts with inducible esterases, ChLip1 (lipase) and ChCut1 (cutinase). Further, the KEGG pathway for "fatty acid degradation " was significantly enriched in Impranil PU inducible genes, indicating that the fungus may use the degradation intermediates to generate energy via this pathway. Taken together, our data indicates secretion of both esterase and hydrophobic surface binding proteins by C. halotolerans plays an important role in Impranil PU absorption and subsequent degradation. Our study provides a mechanistic insight into Impranil PU biodegradation by deep sea fungi and provides the basis for future development of biotechnological PU recycling.}, language = {en} } @article{RaffeinerUestuenGuerraetal.2022, author = {Raffeiner, Margot and {\"U}st{\"u}n, Suayib and Guerra, Tiziana and Spinti, Daniela and Fitzner, Maria and Sonnewald, Sophia and Baldermann, Susanne and B{\"o}rnke, Frederik}, title = {The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum)}, series = {The plant cell}, volume = {34}, journal = {The plant cell}, number = {5}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1040-4651}, doi = {10.1093/plcell/koac032}, pages = {1684 -- 1708}, year = {2022}, abstract = {As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.}, language = {en} }