@article{RamanVenkatesanGulyakovaFruebingetal.2018, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Relaxation processes and structural transitions in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) relaxor-ferroelectric terpolymers as seen in dielectric spectroscopy}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {6}, publisher = {Institut of Electrical and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007440}, pages = {2229 -- 2235}, year = {2018}, abstract = {Dielectric relaxation processes and structural transitions in Poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films with two different monomer compositions were investigated in comparison with Poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as reference material. Differential Scanning Calorimetry was employed to assess annealing effects on phase transitions and crystalline structure, while relaxation processes were investigated by means of Dielectric Relaxation Spectroscopy, the results of which indicate the existence of two separate dispersion regions, denoted as processes A and B, respectively. Process A appears at a certain temperature independent of frequency, but is strongly influenced by the crystallisation temperature and the CFE content, while peak B shows typical features of a relaxation process and is less influenced by crystallisation temperature and CFE content. Furthermore, peak B is related to the glass transition which is more pronounced in the terpolymer than in P(VDF-TrFE). A closer analysis indicates that the addition of CFE and thermal annealing gradually shift the ferro-to-paraelectric transition in P(VDF-TrFE) to lower temperatures, while the phase transition is transformed more and more into a relaxation.}, language = {en} } @article{GuliakovaGorokhovatskyGalikhanovetal.2019, author = {Guliakova, A. A. and Gorokhovatsky, Yu. A. and Galikhanov, M. F. and Fr{\"u}bing, Peter}, title = {Thermoactivational spectroscopy of the high impact polystyrene based composite films}, series = {St. Petersburg Polytechnic University Journal : Physics and Mathematics}, volume = {12}, journal = {St. Petersburg Polytechnic University Journal : Physics and Mathematics}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-7223}, doi = {10.18721/JPM.12401}, pages = {9 -- 16}, year = {2019}, abstract = {The relaxation processes in the high impact polystyrene (HIPS) films filled with 2, 4, 6 vol.\% of titanium dioxide (TiO2) of the rutile modification have been studied using the thermally stimulated depolarization current (TSDC) technique. Three relaxation processes were observed in the composite HIPS films. The first one (a-relaxation peak) appeared at about 93 degrees C and represented the glass transition. The second peak p was a high-temperature part of the first one and overlapped it. The p peak was caused by the release and subsequent motion of excess charges deposited during the electret preparation or the polarization process. The third peak appeared at about 150 degrees C and occurred only in the spectra of the composite films. The overlapping peaks were separated by the thermal cleaning technique. The subsequent application of the numerical methods (the Tikhonov regularization technique) allowed to determine the activation energy of the second process and to compare the obtained value with the corresponding data on the dielectric relaxation.}, language = {ru} } @article{RamanVenkatesanGulyakovaFruebingetal.2019, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Electrical polarization phenomena, dielectric relaxations and structural transitions in a relaxor-ferroelectric terpolymer investigated with electrical probing techniques}, series = {Materials research express}, volume = {6}, journal = {Materials research express}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2053-1591}, doi = {10.1088/2053-1591/ab5352}, pages = {7}, year = {2019}, abstract = {Dielectric Relaxation Spectroscopy (DRS) and Thermally Stimulated Depolarization Current (TSDC) measurements were employed to study dielectric-relaxation processes, structural transitions and electric-polarization phenomena in poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films. Results from DRS confirm the existence of two separate dispersion regions related to a para-to-ferroelectric phase transition and to the glass transition. The dipolar TSDC peak correlates with the loss peak of the ? relaxation that represents the glass transition. The electric polarization calculated from the dipolar TSDC peak (glass transition) shows a non-linear electric-field dependence and saturates at high electric poling fields. As the observed behaviour is essentially the same as that of the electric polarization obtained from direct polarization-versus-electric-field hysteresis measurements, TSDC experiments are also suitable for studying the polarization in relaxor-ferroelectric polymers. A saturation polarization of 44 mC m(?2) was found for an electric field of 190 MV m(?1).}, language = {en} } @article{FruebingKremmerGerhardetal.2006, author = {Fr{\"u}bing, Peter and Kremmer, Alexander and Gerhard, Reimund and Spanoudaki, Anna and Pissis, Polycarpos}, title = {Relaxation processes at the glass transition in polyamide 11: From rigidity to viscoelasticity}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {125}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.2360266}, pages = {8}, year = {2006}, abstract = {Relaxation processes associated with the glass transition in nonferroelectric and ferroelectric polyamide (PA) 11 are investigated by means of differential scanning calorimetry, dynamic mechanical analysis, and dielectric relaxation spectroscopy (DRS) in order to obtain information about the molecular mobility within the amorphous phase. In particular, the effects of melt quenching, cold drawing, and annealing just below the melting region are studied with respect to potential possibilities and limitations for improving the piezoelectric and pyroelectric properties of PA 11. A relaxation map is obtained from DRS that shows especially the crossover region where the cooperative alpha relaxation and the local beta relaxation merge into a single high-temperature process. No fundamental difference between quenched, cold-drawn, and annealed films is found, though in the cold-drawn (ferroelectric) film the alpha relaxation is suppressed and slowed down, but it is at least partly recovered by subsequent annealing. It is concluded that there exists an amorphous phase in all structures, even in the cold-drawn film. The amorphous phase can be more rigid or more viscoelastic depending on preparation. Cold drawing not only leads to crystallization in a ferroelectric form but also to higher rigidity of the remaining amorphous phase. Annealing just below the melting region after cold drawing causes a stronger phase separation between the crystalline phase and a more viscoelastic amorphous phase.}, language = {en} } @article{KalbitzFruebingGerhardetal.2011, author = {Kalbitz, Rene and Fr{\"u}bing, Peter and Gerhard, Reimund and Taylor, D. M.}, title = {Stability of polarization in organic ferroelectric metal-insulator-semiconductor structures}, series = {Applied physics letters}, volume = {98}, journal = {Applied physics letters}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3543632}, pages = {3}, year = {2011}, abstract = {Dielectric measurements have been carried out on all-organic metal-insulator-semiconductor structures with the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) as the gate insulator. It is shown that the polarization states remain stable after poling with accumulation and depletion voltage. However, negative charge trapped at the semiconductor-insulator interface during the depletion cycle masks the negative shift in flatband voltage expected during the sweep to accumulation voltages.}, language = {en} } @article{WangLackXieetal.2012, author = {Wang, Feipeng and Lack, Alexander and Xie, Zailai and Fr{\"u}bing, Peter and Taubert, Andreas and Gerhard, Reimund}, title = {Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films}, series = {Applied physics letters}, volume = {100}, journal = {Applied physics letters}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3683526}, pages = {4}, year = {2012}, abstract = {Thin films of ferroelectric beta-phase poly(vinylidene fluoride) (PVDF) were spin-coated from a solution that contained small amounts of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate. A remanent polarization of 60 mC/m(2) and a quasi-static pyroelectric coefficient of 19 mu C/m(2)K at 30 degrees C were observed in the films. It is suggested that the IL promotes the formation of the beta phase through dipolar interactions between PVDF chain-molecules and the IL. The dipolar interactions are identified as Coulomb attraction between hydrogen atoms in PVDF chains and anions in IL. The strong crystallinity increase is probably caused by the same dipolar interaction as well.}, language = {en} } @article{FruebingWangWagener2012, author = {Fr{\"u}bing, Peter and Wang, Feipeng and Wagener, Michael}, title = {Relaxation processes and structural transitions in stretched films of polyvinylidene fluoride and its copolymer with hexafluoropropylene}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6838-1}, pages = {603 -- 611}, year = {2012}, abstract = {Relaxation processes and structural transitions in nonstretched and uniaxially stretched films of poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) and its homopolymer polyvinylidene fluoride (PVDF) for comparison were investigated with the aim of understanding the electromechanical properties of this lower-modulus ferroelectric copolymer. The mechanical and the dielectric response at the glass transition ( relaxation) exhibit similar temperature dependence of the relaxation time, whereas mechanical and dielectric processes above the glass transition are not related. They represent a continuous softening process within the amorphous phase and the dielectric relaxation, respectively. The latter is attributed to conformational changes of VDF segments in lamellae of spherulites constituting the nonpolar crystalline phase. Furthermore, there is a contribution from melting of secondary crystallites formed in the amorphous phase during annealing or storage. Mechanically, this transition appears in nonstretched and stretched films as an accelerated decrease of the elastic modulus that terminates the rubber plateau. Dielectrically, this transition becomes visible as a frequency-independent loss peak only in stretched films, because stretching removes the relaxation, which superimposes the transition in nonstretched films. Melting of secondary crystallites is shown to appear in the homopolymer, too, though less pronounced because of more complete primary crystallisation. Stretching increases the modulus above the glass transition only slightly, and it does not significantly influence the softening process. On the other hand, stretching causes a spontaneous polarisation and introduces order within the amorphous phase, rendering it more polar. Melting of secondary crystallites provides an additional contribution to the polarisation. These findings may explain the relatively high electromechanical activity of P(VDF-HFP) but also its relatively low thermal stability. Moreover, they may be important for correct procedure and analysis of temperature-dependent dielectric measurements on partially crystalline polymers, in particular on those with less favourable sterical conditions for primary crystallisation.}, language = {en} } @article{KollscheKalbitzKappeletal.2012, author = {Kollsche, Matthias and Kalbitz, Rene and Kappel, Marcel and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Vermittlung von Schl{\"u}sselkompetenzen f{\"u}r Biologen in der Studieneingangsphase}, isbn = {978-3- 937026-77-0}, year = {2012}, language = {de} } @article{GanesanFruebingMellingeretal.2009, author = {Ganesan, Lakshmi Meena and Fr{\"u}bing, Peter and Mellinger, Axel and Gerhard, Reimund}, title = {Dielectric relaxation behaviour of nematic liquid crystals dispersed in poly(vinylidene fluoride- trifluoroethylene)}, issn = {0022-3727}, doi = {10.1088/0022-3727/42/9/092006}, year = {2009}, abstract = {Polymer-dispersed liquid crystals (PDLCs) are prepared from poly(vinylidene fluoride-trifluoroethylene) (P(VDF- TrFE)) and a nematic liquid-crystal (LC). The anchoring effect was studied using dielectric relaxation spectroscopy. Two dispersion regions are observed in the dielectric spectra of the pure P(VDF-TrFE) film. They are related to the glass transition and to a space-charge relaxation. In PDLC films containing 10 wt\% of LC, an additional, bias field-dependent relaxation peak is found that can be attributed to the motion of LC molecules. Due to the hindered movement of the LC molecules, this relaxation process is considerably slowed down, compared with the related process in the pure LC.}, language = {en} } @article{WangFruebingWirgesetal.2010, author = {Wang, Feipeng and Fr{\"u}bing, Peter and Wirges, Werner and Gerhard, Reimund and Wegener, Michael}, title = {Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films}, issn = {1070-9878}, doi = {10.1109/TDEI.2010.5539679}, year = {2010}, abstract = {beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C.}, language = {en} }