@article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Warscher, Michael and Strasser, Ulrich and Bronstert, Axel}, title = {Elevation-dependent compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel}, series = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, volume = {52}, journal = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, number = {2}, publisher = {IWA Publ.}, address = {London}, issn = {2224-7955}, doi = {10.2166/nh.2021.092}, pages = {536 -- 557}, year = {2021}, abstract = {In snow-dominated river basins, floods often occur during early summer, when snowmelt-induced runoff superimposes with rainfall-induced runoff. An earlier onset of seasonal snowmelt as a consequence of a warming climate is often expected to shift snowmelt contribution to river runoff and potential flooding to an earlier date. Against this background, we assess the impact of rising temperatures on seasonal snowpacks and quantify changes in timing, magnitude and elevation of snowmelt. We analyse in situ snow measurements, conduct snow simulations and examine changes in river runoff at key gauging stations. With regard to snowmelt, we detect a threefold effect of rising temperatures: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Due to the wide range of elevations in the catchment, snowmelt does not occur simultaneously at all elevations. Results indicate that elevation bands melt together in blocks. We hypothesise that in a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevation. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier, although the timing of the snowmelt-induced runoff stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below.}, language = {en} } @article{KuentzerKrstić2020, author = {Kuentzer, Felipe A. and Krstić, Miloš}, title = {Soft error detection and correction architecture for asynchronous bundled data designs}, series = {IEEE transactions on circuits and systems}, volume = {67}, journal = {IEEE transactions on circuits and systems}, number = {12}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York}, issn = {1549-8328}, doi = {10.1109/TCSI.2020.2998911}, pages = {4883 -- 4894}, year = {2020}, abstract = {In this paper, an asynchronous design for soft error detection and correction in combinational and sequential circuits is presented. The proposed architecture is called Asynchronous Full Error Detection and Correction (AFEDC). A custom design flow with integrated commercial EDA tools generates the AFEDC using the asynchronous bundled-data design style. The AFEDC relies on an Error Detection Circuit (EDC) for protecting the combinational logic and fault-tolerant latches for protecting the sequential logic. The EDC can be implemented using different detection methods. For this work, two boundary variants are considered, the Full Duplication with Comparison (FDC) and the Partial Duplication with Parity Prediction (PDPP). The AFEDC architecture can handle single events and timing faults of arbitrarily long duration as well as the synchronous FEDC, but additionally can address known metastability issues of the FEDC and other similar synchronous architectures and provide a more practical solution for handling the error recovery process. Two case studies are developed, a carry look-ahead adder and a pipelined non-restoring array divider. Results show that the AFEDC provides equivalent fault coverage when compared to the FEDC while reducing area, ranging from 9.6\% to 17.6\%, and increasing energy efficiency, which can be up to 6.5\%.}, language = {en} } @article{GafosLieshout2020, author = {Gafos, Adamantios I. and Lieshout, Pascal H. H. M. van}, title = {Models and theories of speech production}, series = {Frontiers in psychology}, volume = {11}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2020.01238}, pages = {4}, year = {2020}, language = {en} }