@article{LetortRetailleauBoueetal.2018, author = {Letort, Jean and Retailleau, Lise and Boue, Pierre and Radiguet, Mathilde and Gardonio, Blandine and Cotton, Fabrice Pierre and Campillo, Michel}, title = {Lateral variations of the Guerrero-Oaxaca subduction zone (Mexico) derived from weak seismicity (M(b)3.5+) detected on a single array at teleseismic distance}, series = {Geophysical journal international}, volume = {213}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy035}, pages = {1002 -- 1012}, year = {2018}, abstract = {Detections of pP and sP phase arrivals (the so-called depth phases) at teleseismic distance provide one of the best ways to estimate earthquake focal depth, as the P-pP and the P-sP delays are strongly dependent on the depth. Based on a new processing workflow and using a single seismic array at teleseismic distance, we can estimate the depth of clusters of small events down to magnitude M-b 3.5. Our method provides a direct view of the relative variations of the seismicity depth from an active area. This study focuses on the application of this new methodology to study the lateral variations of the Guerrero subduction zone (Mexico) using the Eielson seismic array in Alaska (USA). After denoising the signals, 1232 M-b 3.5 + events were detected, with clear P, pP, sP and PcP arrivals. A high-resolution view of the lateral variations of the depth of the seismicity of the Guerero-Oaxaca area is thus obtained. The seismicity is shown to be mainly clustered along the interface, coherently following the geometry of the plate as constrained by the receiver-function analysis along the Meso America Subduction Experiment profile. From this study, the hypothesis of tears on the western part of Guerrero and the eastern part of Oaxaca are strongly confirmed by dramatic lateral changes in the depth of the earthquake clusters. The presence of these two tears might explain the observed lateral variations in seismicity, which is correlated with the boundaries of the slow slip events.}, language = {en} } @article{KruegerKulikovaLandgraf2018, author = {Kr{\"u}ger, Frank and Kulikova, Galina and Landgraf, Angela}, title = {Magnitudes for the historical 1885 (Belovodskoe), the 1887 (Verny) and the 1889 (Chilik) earthquakes in Central Asia determined from magnetogram recordings}, series = {Geophysical journal international}, volume = {215}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy377}, pages = {1824 -- 1840}, year = {2018}, abstract = {Six large magnitude earthquakes in Central Asia which occurred at the end of the 19th century were recorded on early magnetographs in Great Britain. Scalar seismic moment estimates of the 1911 Chon-Kemin, the 1902 Atushi and the 1907 Karatag earthquakes in Central Asia were recently determined by historical seismogram modelling. For those events, we find agreement between moment magnitudes estimated from seismograms and from magnetograms. This supports the assumption of linear scaling of magnetogram amplitudes as function of M-0, which we then use to estimate the moment magnitudes for earlier large-magnitude events, that is, the 1885 Belovodskoe, 1887 Verny and 1889 Chilik earthquakes. The magnetometer data imply that the Chilik earthquake had M(W)7.9, slightly smaller than the Chon-Kemin event with M(W)8.0. The Verny earthquake, however, for which we estimate M(W)7.7, is likely larger than listed in catalogues (M7.3). Similarly, we find a larger magnitude M(W)7.6 (instead of the previous M6.9) for the Belovodskoe earthquake, but this remains uncertain due to measurement imprecision.}, language = {en} } @article{CescaGrigoliHeimannetal.2016, author = {Cesca, Simone and Grigoli, Francesco and Heimann, Sebastian and Dahm, Torsten and Kriegerowski, Marius and Sobiesiak, M. and Tassara, C. and Olcay, M.}, title = {The M-w 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks}, series = {Geophysical journal international}, volume = {204}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggv544}, pages = {1766 -- 1780}, year = {2016}, abstract = {The 2014 April 1, M-w 8.1 Iquique (Chile) earthquake struck in the Northern Chile seismic gap. With a rupture length of less than 200 km, it left unbroken large segments of the former gap. Early studies were able to model the main rupture features but results are ambiguous with respect to the role of aseismic slip and left open questions on the remaining hazard at the Northern Chile gap. A striking observation of the 2014 earthquake has been its extensive preparation phase, with more than 1300 events with magnitude above M-L 3, occurring during the 15 months preceding the main shock. Increasing seismicity rates and observed peak magnitudes accompanied the last three weeks before the main shock. Thanks to the large data sets of regional recordings, we assess the precursor activity, compare foreshocks and aftershocks and model rupture preparation and rupture effects. To tackle inversion challenges for moderate events with an asymmetric network geometry, we use full waveforms techniques to locate events, map the seismicity rate and derive source parameters, obtaining moment tensors for more than 300 events (magnitudes M-w 4.0-8.1) in the period 2013 January 1-2014 April 30. This unique data set of fore- and aftershocks is investigated to distinguish rupture process models and models of strain and stress rotation during an earthquake. Results indicate that the spatial distributions of foreshocks delineated the shallower part of the rupture areas of the main shock and its largest aftershock, well matching the spatial extension of the aftershocks cloud. Most moment tensors correspond to almost pure double couple thrust mechanisms, consistent with the slab orientation. Whereas no significant differences are observed among thrust mechanisms in different areas, nor among thrust foreshocks and aftershocks, the early aftershock sequence is characterized by the presence of normal fault mechanisms, striking parallel to the trench but dipping westward. These events likely occurred in the shallow wedge structure close to the slab interface and are consequence of the increased extensional stress in this region after the largest events. The overall stress inversion result suggests a minor stress rotation after the main shock, but a significant release of the deviatoric stress. The temporal change in the distribution of focal mechanisms can also be explained in terms of the spatial heterogeneity of the stress field: under such interpretation, the potential of a large megathrust earthquake breaking a larger segment offshore Northern Chile remains high.}, language = {en} } @article{KulikovaSchurrKruegeretal.2016, author = {Kulikova, Galina and Schurr, Bernd and Kr{\"u}ger, Frank and Brzoska, Elisabeth and Heimann, Sebastian}, title = {Source parameters of the Sarez-Pamir earthquake of 1911 February 18}, series = {Geophysical journal international}, volume = {205}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw069}, pages = {1086 -- 1098}, year = {2016}, abstract = {The Ms \&\#8764; 7.7 Sarez-Pamir earthquake of 1911 February 18 is the largest instrumentally recorded earthquake in the Pamir region. It triggered one of the largest landslides of the past century, building a giant natural dam and forming Lake Sarez. As for many strong earthquakes from that time, information about source parameters of the Sarez-Pamir earthquake is limited due to the sparse observations. Here, we present the analysis of analogue seismic records of the Sarez-Pamir earthquake. We have collected, scanned and digitized 26 seismic records from 13 stations worldwide to relocate the epicentre and determine the event's depth (\&\#8764;26 km) and magnitude (mB7.3 and Ms7.7). The unusually good quality of the digitized waveforms allowed their modelling, revealing an NE-striking sinistral strike-slip focal mechanism in accordance with regional tectonics. The shallow depth and magnitude (Mw7.3) of the earthquake were confirmed. Additionally, we investigated the possible contribution of the landslide to the waveforms and present an alternative source model assuming the landslide and earthquake occurred in close sequence.}, language = {en} } @article{KulikovaKrueger2015, author = {Kulikova, Galina and Kr{\"u}ger, Frank}, title = {Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records}, series = {Geophysical journal international}, volume = {201}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggv091}, pages = {1891 -- 1911}, year = {2015}, abstract = {Several destructive earthquakes have occurred in Tien-Shan region at the beginning of 20th century. However, the detailed seismological characteristics, especially source parameters of those earthquakes are still poorly investigated. The Chon-Kemin earthquake is the strongest instrumentally recorded earthquake in the Tien-Shan region. This earthquake has produced an approximately 200 km long system of surface ruptures along Kemin-Chilik fault zone and killed about similar to 400 people. Several studies presented the different information on the earthquake epicentre location and magnitude, and two different focal mechanisms were also published. The reason for the limited knowledge of the source parameters for the Chon-Kemin earthquake is the complexity of old analogue records processing, digitization and analysis. In this study the data from 23 seismic stations worldwide were collected and digitized. The earthquake epicentre was relocated to 42.996NA degrees and 77.367EA degrees, the hypocentre depth is estimated between 10 and 20 km. The magnitude was recalculated to m(B) 8.05, M-s 7.94 and M-w 8.02. The focal mechanism, determined from amplitude ratios comparison of the observed and synthetic seismograms, was: str = 264A degrees, dip = 52A degrees, rake = 98A degrees. The apparent source time duration was between similar to 45 and similar to 70 s, the maximum slip occurred 25 s after the beginning of the rupture. Two subevents were clearly detected from the waveforms with the scalar moment ratio between them of about 1/3, the third subevent was also detected with less certainty. Taking into account surface rupture information, the fault geometry model with three patches was proposed. Based on scaling relations we conclude that the total rupture length was between similar to 260 and 300 km and a maximum rupture width could reach similar to 70 km.}, language = {en} } @article{GhodsShabanianBergmanetal.2015, author = {Ghods, Abdolreza and Shabanian, Esmaeil and Bergman, Eric and Faridi, Mohammad and Donner, Stefanie and Mortezanejad, Gholamreza and Aziz-Zanjani, Asiyeh}, title = {The Varzaghan-Ahar, Iran, Earthquake Doublet (M-w 6.4, 6.2): implications for the geodynamics of northwest Iran}, series = {Geophysical journal international}, volume = {203}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggv306}, pages = {522 -- 540}, year = {2015}, abstract = {On 2012 August 11, a pair of large, damaging earthquakes struck the Varzaghan-Ahar region in northwest Iran, in a region where there was no major mapped fault or any well-documented historical seismicity. To investigate the active tectonics of the source region we applied a combination of seismological methods (local aftershock network, calibrated multiple event relocation and focal mechanism studies), field observations (structural geology and geomorphological) and inversions for the regional stress field. The epicentral region is north of the North Tabriz Fault. The first main shock is characterized by right-lateral strike-slip motion on an almost E-W fault plane of about 23 km length extending from the surface to a depth of about 14 km. The second main shock occurred on an ENE-striking fault that dips at 60-70A degrees to the NW. Independent inversions of focal mechanisms and geologically determined fault kinematic data for the active stress state yield a transpressional tectonic regime with sigma(1) oriented N132E. For the region northeast of the North Tabriz Fault, the presence of rigid lithosphere of the South Caspian Basin implies the kinematic adjustment by northward transferring of the contracted masses through both distributed deformation and structural deflections. Our results suggest that the kinematic adjustment inside a contracting wedge may occur along interacting crosswise or conjugate faults to accommodate low rates of internal deformation. At a global scale, our results indicate that despite the basic assumption of 'rigid blocks' in geodetic plate modelling, internal deformation of block-like regions could control the kinematics of deformation and the level of seismic hazard within and around such regions of low deformation rate.}, language = {en} } @article{MaghsoudiHainzlCescaetal.2014, author = {Maghsoudi, Samira and Hainzl, Sebastian and Cesca, Simone and Dahm, Torsten and Kaiser, Diethelm}, title = {Identification and characterization of growing large-scale en-echelon fractures in a salt mine}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt443}, pages = {1092 -- 1105}, year = {2014}, abstract = {The spatiotemporal seismicity of acoustic emission (AE) events recorded in the Morsleben salt mine is investigated. Almost a year after backfilling of the cavities from 2003, microevents are distributed with distinctive stripe shapes above cavities at different depth levels. The physical forces driving the creation of these stripes are still unknown. This study aims to find the active stripes and track fracture developments over time by combining two different temporal and spatial clustering techniques into a single methodological approach. Anomalous seismicity parameters values like sharp b-value changes for two active stripes are good indicators to explain possible stress accumulation at the stripe tips. We identify the formation of two new seismicity stripes and show that the AE activities in active clusters are migrated mostly unidirectional to eastward and upward. This indicates that the growth of underlying macrofractures is controlled by the gradient of extensional stress. Studying size distribution characteristic in terms of frequency-magnitude distribution and b-value in active phase and phase with constant seismicity rate show that deviations from the Gutenberg-Richter power law can be explained by the inclusion of different activity phases: (1) the inactive period before the formation of macrofractures, which is characterized by a deficit of larger events (higher b-values) and (2) the period of fracture growth characterized by the occurrence of larger events (smaller b-values).}, language = {en} } @article{DahmFischer2014, author = {Dahm, Torsten and Fischer, Tomas}, title = {Velocity ratio variations in the source region of earthquake swarms in NW Bohemia obtained from arrival time double-differences}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt410}, pages = {957 -- 970}, year = {2014}, abstract = {Crustal earthquake swarms are an expression of intensive cracking and rock damaging over periods of days, weeks or month in a small source region in the crust. They are caused by longer lasting stress changes in the source region. Often, the localized stressing of the crust is associated with fluid or gas migration, possibly in combination with pre-existing zones of weaknesses. However, verifying and quantifying localized fluid movement at depth remains difficult since the area affected is small and geophysical prospecting methods often cannot reach the required resolution. We apply a simple and robust method to estimate the velocity ratio between compressional (P) and shear (S) waves (upsilon(P)/upsilon(S)-ratio) in the source region of an earthquake swarm. The upsilon(P)/upsilon(S)-ratio may be unusual small if the swarm is related to gas in a porous or fractured rock. The method uses arrival time difference between P and S waves observed at surface seismic stations, and the associated double differences between pairs of earthquakes. An advantage is that earthquake locations are not required and the method seems lesser dependent on unknown velocity variations in the crust outside the source region. It is, thus, suited for monitoring purposes. Applications comprise three natural, mid-crustal (8-10 km) earthquake swarms between 1997 and 2008 from the NW-Bohemia swarm region. We resolve a strong temporal decrease of upsilon(P)/upsilon(S) before and during the main activity of the swarm, and a recovery of upsilon(P)/upsilon(S) to background levels at the end of the swarms. The anomalies are interpreted in terms of the Biot-Gassman equations, assuming the presence of oversaturated fluids degassing during the beginning phase of the swarm activity.}, language = {en} } @article{CescaSenDahm2014, author = {Cesca, Simone and Sen, Ali Tolga and Dahm, Torsten}, title = {Seismicity monitoring by cluster analysis of moment tensors}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt492}, pages = {1813 -- 1826}, year = {2014}, abstract = {We suggest a new clustering approach to classify focal mechanisms from large moment tensor catalogues, with the purpose of automatically identify families of earthquakes with similar source geometry, recognize the orientation of most active faults, and detect temporal variations of the rupture processes. The approach differs in comparison to waveform similarity methods since clusters are detected even if they occur in large spatial distances. This approach is particularly helpful to analyse large moment tensor catalogues, as in microseismicity applications, where a manual analysis and classification is not feasible. A flexible algorithm is here proposed: it can handle different metrics, norms, and focal mechanism representations. In particular, the method can handle full moment tensor or constrained source model catalogues, for which different metrics are suggested. The method can account for variable uncertainties of different moment tensor components. We verify the method with synthetic catalogues. An application to real data from mining induced seismicity illustrates possible applications of the method and demonstrate the cluster detection and event classification performance with different moment tensor catalogues. Results proof that main earthquake source types occur on spatially separated faults, and that temporal changes in the number and characterization of focal mechanism clusters are detected. We suggest that moment tensor clustering can help assessing time dependent hazard in mines.}, language = {en} } @article{GrigoliCescaAmorosoetal.2014, author = {Grigoli, Francesco and Cesca, Simone and Amoroso, Ortensia and Emolo, Antonio and Zollo, Aldo and Dahm, Torsten}, title = {Automated seismic event location by waveform coherence analysis}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt477}, pages = {1742 -- 1753}, year = {2014}, abstract = {Automated location of seismic events is a very important task in microseismic monitoring operations as well for local and regional seismic monitoring. Since microseismic records are generally characterized by low signal-to-noise ratio, automated location methods are requested to be noise robust and sufficiently accurate. Most of the standard automated location routines are based on the automated picking, identification and association of the first arrivals of P and S waves and on the minimization of the residuals between theoretical and observed arrival times of the considered seismic phases. Although current methods can accurately pick P onsets, the automatic picking of the S onset is still problematic, especially when the P coda overlaps the S wave onset. In this paper, we propose a picking free earthquake location method based on the use of the short-term-average/long-term-average (STA/LTA) traces at different stations as observed data. For the P phases, we use the STA/LTA traces of the vertical energy function, whereas for the S phases, we use the STA/LTA traces of a second characteristic function, which is obtained using the principal component analysis technique. In order to locate the seismic event, we scan the space of possible hypocentral locations and origin times, and stack the STA/LTA traces along the theoretical arrival time surface for both P and S phases. Iterating this procedure on a 3-D grid, we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatial coordinates of the seismic event. A pilot application was performed in the Campania-Lucania region (southern Italy) using a seismic network (Irpinia Seismic Network) with an aperture of about 150 km. We located 196 crustal earthquakes (depth < 20 km) with magnitude range 1.1 < M-L < 2.7. A subset of these locations were compared with accurate manual locations refined by using a double-difference technique. Our results indicate a good agreement with manual locations. Moreover, our method is noise robust and performs better than classical location methods based on the automatic picking of the P and S waves first arrivals.}, language = {en} }