@article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{ChristakoudiTsilidisMulleretal.2020, author = {Christakoudi, Sofa and Tsilidis, Konstantinos K. and Muller, David C. and Freisling, Heinz and Weiderpass, Elisabete and Overvad, Kim and S{\"o}derberg, Stefan and H{\"a}ggstr{\"o}m, Christel and Pischon, Tobias and Dahm, Christina C. and Zhang, Jie and Tj{\o}nneland, Anne and Schulze, Matthias Bernd}, title = {A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Berlin}, pages = {15}, year = {2020}, abstract = {Abdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI<18.5 kg/m(2)) or obese (BMI30 kg/m(2)) categories, while the highest quartile of ABSI separated 18-39\% of the individuals within each BMI category, which had 22-55\% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring.}, language = {en} } @article{Scianna2018, author = {Scianna, Bastian Matteo}, title = {A Blueprint for Successful Peacekeeping?}, series = {The international history review}, volume = {41}, journal = {The international history review}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0707-5332}, doi = {10.1080/07075332.2018.1431804}, pages = {650 -- 672}, year = {2018}, abstract = {On 6 June 1982, Israel invaded Lebanon to fight the Palestinian Liberation Organization (PLO). Between August 1982 and February 1984, the US, France, Britain and Italy deployed a Multinational Force (MNF) to Beirut. Its task was to act as an interposition force to bolster the government and to bring peace to the people. The mission is often forgotten or merely remembered in context with the bombing of US Marines' barracks. However, an analysis of the Italian contingent shows that the MNF was not doomed to fail and could accomplish its task when operational and diplomatic efforts were coordinated. The Italian commander in Beirut, General Franco Angioni, followed a successful approach that sustained neutrality, respectful behaviour and minimal force, which resulted in a qualified success of the Italian efforts.}, language = {en} } @article{Hoehnke1996, author = {Hoehnke, Hans-J{\"u}rgen}, title = {A Birkhoff theorem for partial algebras via completion}, year = {1996}, language = {en} } @article{OmidbakhshfardNeerakkalGuptaetal.2020, author = {Omidbakhshfard, Mohammad Amin and Neerakkal, Sujeeth and Gupta, Saurabh and Omranian, Nooshin and Guinan, Kieran J. and Brotman, Yariv and Nikoloski, Zoran and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Gechev, Tsanko S.}, title = {A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {2}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21020474}, pages = {26}, year = {2020}, abstract = {Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels.}, language = {en} } @article{BadalyanNeumannSchaalLeimkuehleretal.2013, author = {Badalyan, Artavazd and Neumann-Schaal, Meina and Leimk{\"u}hler, Silke and Wollenberger, Ursula}, title = {A Biosensor for aromatic aldehydes comprising the mediator dependent PaoABC-Aldehyde oxidoreductase}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {25}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.201200362}, pages = {101 -- 108}, year = {2013}, abstract = {A novel aldehyde oxidoreductase (PaoABC) from Escherichia coli was utilized for the development of an oxygen insensitive biosensor for benzaldehyde. The enzyme was immobilized in polyvinyl alcohol and currents were measured for aldehyde oxidation with different one and two electron mediators with the highest sensitivity for benzaldehyde in the presence of hexacyanoferrate(III). The benzaldehyde biosensor was optimized with respect to mediator concentration, enzyme loading and pH using potassium hexacyanoferrate(III). The linear measuring range is between 0.5200 mu M benzaldehyde. In correspondence with the substrate selectivity of the enzyme in solution the biosensor revealed a preference for aromatic aldehydes and less effective conversion of aliphatic aldehydes. The biosensor is oxygen independent, which is a particularly attractive feature for application. The biosensor can be applied to detect contaminations with benzaldehyde in solvents such as benzyl alcohol, where traces of benzaldehyde in benzyl alcohol down to 0.0042?\% can be detected.}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {A biological foundation for spatial-numerical associations}, series = {Annals of the New York Academy of Sciences}, volume = {1477}, journal = {Annals of the New York Academy of Sciences}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0077-8923}, doi = {10.1111/nyas.14418}, pages = {44 -- 53}, year = {2020}, abstract = {"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.}, language = {en} } @article{BoechatWeithoffKruegeretal.2007, author = {Bo{\"e}chat, Iola G. and Weithoff, Guntram and Kr{\"u}ger, Angela and G{\"u}cker, Bj{\"o}rn and Adrian, Rita}, title = {A biochemical explanation for the success of the mixotrophy in the flagellate Ochromonas sp.}, issn = {0024-3590}, doi = {10.4319/lo.2007.52.4.1624}, year = {2007}, abstract = {We report the influence of different nutritional modes-autotrophy, mixotrophy, and heterotrophy-on the fatty acid and sterol composition of the freshwater flagellate Ochromonas sp. and discuss the ecological significance of our results with respect to the resource competition theory (rct). Polyunsaturated fatty acids (PUFAs) are the most efficient biochemical variable distinguishing between nutritional modes of Ochromonas sp. Decreasing concentrations of PUFAs were observed in the order autotrophs, mixotrophs, heterotrophs. In mixotrophs and heterotrophs, concentrations of saturated fatty acids were higher than those of monounsaturated fatty acids and PUFAs as a result of bacterivory. Stigmasterol was the main sterol in Ochromonas sp., regardless of nutritional mode. Mixotrophs showed higher growth rates than heterotrophs, which could not be explained by rct. Heterotrophs, in turn, exhibited higher growth rates than autotrophs, which were cultured under the same light conditions as mixotrophs. Mixotrophs can synthesize PUFAs, which are important for many physiological functions such as membrane permeability and growth. Thus, mixotrophy facilitated efficient growth as well as the ability to synthesize complex and essential biomolecules. These strong synergetic effects are due to the combination of biochemical benefits of heterotrophic and autotrophic metabolic pathways and cannot be predicted by rct.}, language = {en} } @article{ZhangBramskiTutusetal.2019, author = {Zhang, Shuhao and Bramski, Julia and Tutus, Murat and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase on a Porous Support}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {37}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b12029}, pages = {34441 -- 34453}, year = {2019}, abstract = {Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-D-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.}, language = {en} } @article{LettauWarsinkeKatterleetal.2006, author = {Lettau, Kristian and Warsinke, Axel and Katterle, Martin and Danielsson, Bengt and Scheller, Frieder W.}, title = {A bifunctional molecularly imprinted polymer (MIP): analysis of binding and catalysis by a thermistor}, doi = {10.1002/anie.200601796}, year = {2006}, abstract = {Binding or catalysis? Both can be distinguished with a molecularly imprinted polymer (MIP) by the different patterns of heat generation. The catalytically active sites, like in the corresponding enzyme, generate a steady-state temperature increase. Thus, enzyme-like catalysis and antibody-analogue binding are analyzed simultaneously in a bifunctional MIP for the first time (see scheme).}, language = {en} }