@article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} } @article{RodriguezPicedaScheckWenderothBottetal.2022, author = {Rodriguez Piceda, Constanza and Scheck-Wenderoth, Magdalena and Bott, Judith and Gomez Dacal, Maria Laura and Cacace, Mauro and Pons, Michael and Prezzi, Claudia and Strecker, Manfred}, title = {Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone}, series = {Lithosphere / Geological Society of America}, volume = {2022}, journal = {Lithosphere / Geological Society of America}, number = {1}, publisher = {GeoScienceWorld}, address = {McLean}, issn = {1941-8264}, doi = {10.2113/2022/2237272}, pages = {26}, year = {2022}, abstract = {In an ocean-continent subduction zone, the assessment of the lithospheric thermal state is essential to determine the controls of the deformation within the upper plate and the dip angle of the subducting lithosphere. In this study, we evaluate the degree of influence of both the configuration of the upper plate (i.e., thickness and composition of the rock units) and variations of the subduction angle on the lithospheric thermal field of the southern Central Andes (29 degrees-39 degrees S). Here, the subduction angle increases from subhorizontal (5 degrees) north of 33 degrees S to steep (similar to 30 degrees) in the south. We derived the 3D temperature and heat flow distribution of the lithosphere in the southern Central Andes considering conversion of S wave tomography to temperatures together with steady-state conductive thermal modeling. We found that the orogen is overall warmer than the forearc and the foreland and that the lithosphere of the northern part of the foreland appears colder than its southern counterpart. Sedimentary blanketing and the thickness of the radiogenic crust exert the main control on the shallow thermal field (<50km depth). Specific conditions are present where the oceanic slab is relatively shallow (<85 km depth) and the radiogenic crust is thin. This configuration results in relatively colder temperatures compared to regions where the radiogenic crust is thick and the slab is steep. At depths >50km, the temperatures of the overriding plate are mainly controlled by the mantle heat input and the subduction angle. The thermal field of the upper plate likely preserves the flat subduction angle and influences the spatial distribution of shortening.}, language = {en} } @article{RiedlMelnickMibeietal.2020, author = {Riedl, Simon and Melnick, Daniel and Mibei, Geoffrey K. and Njue, Lucy and Strecker, Manfred}, title = {Continental rifting at magmatic centres}, series = {Journal of the geological society}, volume = {177}, journal = {Journal of the geological society}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {0016-7649}, doi = {10.1144/jgs2019-021}, pages = {153 -- 169}, year = {2020}, abstract = {The structural evolution of calderas in rifts helps to characterize the spatiotemporal relationships between magmatism, long wavelength crustal deformation and the formation of tectonic deformation zones along the rift axis. We document the structural characteristics of the c. 36 ka old Menengai Caldera located within a young zone of extension in the central Kenya Rift. Field mapping and high-resolution digital surface models show that NNE-striking Holocene normal faults perpendicular to the regional ESE-WNWextension direction dominate the interior sectors of the rift. Inside the caldera, these structures are overprinted by post-collapse doming and faulting of the magmatic centre, resulting in obliquely slipping normal faults bounding a resurgence horst. Radiocarbon dating of faulted units as young as 5 ka cal BP and the palaeo-shorelines of a lake formed during the African Humid Period in the Nakuru Basin indicate that volcanism and fault activity inside and in the vicinity of Menengai must have been sustained during the Holocene. Our analysis confirms that the caldera is located at the centre of an extending rift segment and suggests that other magmatic centres and young zones of faulting along the volcano-tectonic axis of the Kenya Rift may constitute nucleation points of faulting that ultimately foster future continental break-up.}, language = {en} } @article{GuzmanStreckerMartietal.2017, author = {Guzman, Silvina and Strecker, Manfred and Marti, Joan and Petrinovic, Ivan A. and Schildgen, Taylor F. and Grosse, Pablo and Montero-Lopez, Carolina and Neri, Marco and Carniel, Roberto and D. Hongn, Fernando and Muruaga, Claudia and Sudo, Masafumi}, title = {Construction and degradation of a broad volcanic massif: The Vicuna Pampa volcanic complex, southern Central Andes, NW Argentina}, series = {Geological Society of America bulletin}, volume = {129}, journal = {Geological Society of America bulletin}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B31631.1}, pages = {750 -- 766}, year = {2017}, abstract = {The Vicuna Pampa volcanic complex, at the SE edge of the arid Puna Plateau of the Central Andes, records the interplay between volcanic construction and degra-dational processes. The low-sloping Vicuna Pampa volcanic complex, with a 1200-m-deep, southeastward-opening depression, was previously interpreted as a collapse caldera based on morphological considerations. However, characteristic features associated with collapse calderas do not exist, and close inspection instead suggests that the Vicuna Pampa volcanic complex is a strongly eroded, broad, massif-type composite volcano of mainly basaltic to trachyandesitic composition. Construction of the Vicuna Pampa volcanic complex occurred during two distinct cycles separated by the development of the depression. The first and main cycle took place at ca. 12 Ma and was dominated by lava flows and subordinate scoria cones and domes. The second cycle, possibly late Miocene in age, affected the SW portion of the depression with the emplacement of domes. We interpret the central depression as the result of a possible sector collapse and subsequent intense fluvial erosion during middle to late Miocene time, facilitated by faulting, steepened topography, and wetter climate conditions compared to today. We estimate that similar to 65\% of the initial edifice of similar to 240 km(3) was degraded. The efficiency of degradation processes for removing mass from the Vicuna Pampa volcanic complex is surprising, considering that today the region is arid, and the stream channels within the complex are predominantly transport limited, forming a series of coalesced, aggraded alluvial fans and eolian infill. Hence, the Vicuna Pampa volcanic complex records the effects of past degradation efficiency that differs substantially from that of today.}, language = {en} } @article{HetzelNiedermannTaoetal.2006, author = {Hetzel, Ralf and Niedermann, Samuel and Tao, Mingxin and Kubik, Peter W. and Strecker, Manfred}, title = {Climatic versus tectonic control on river incision at the margin of NE Tibet: Be-10 exposure dating of river terraces at the mountain front of the Qilian Shan}, series = {Journal of geophysical research : Earth surface}, volume = {111}, journal = {Journal of geophysical research : Earth surface}, publisher = {Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2005JF000352}, pages = {13}, year = {2006}, abstract = {[1] We document late Pleistocene - Holocene aggradation and incision processes at the mountain front of the Qilian Shan, an active intracontinental fold-and-thrust belt accommodating a significant portion of the India-Asia convergence. The Shiyou River cuts through a NNE vergent fault propagation fold with Miocene red beds in the core and Pliocene - Quaternary growth strata on the northern forelimb. South of the anticline, Miocene strata dip 20 degrees SSW, suggesting a similar orientation for the basal decollement. After aggradation of an similar to 150-m-thick, late Pleistocene valley fill, the Shiyou River formed three terraces. The highest terrace, located 170 m above the river, constitutes the top of the fill. The other terraces are fill cut terraces: their treads are located 130 - 105 m and 37 m above the river, respectively. The 10 Be exposure dating of the terraces suggests that river incision accelerated from 0.8 +/- 0.2 mm yr(-1) to similar to 10 mm yr(-1) at 10 - 15 kyr. We interpret fast Holocene river incision as largely unrelated to tectonic forcing. The late Pleistocene incision rate of 0.8 +/- 0.2 mm yr(-1) places an upper limit of 2.2 +/- 0.5 mm yr(-1) on the horizontal shortening rate, assuming that incision is solely caused by rock uplift above a decollement dipping 20 degrees. However, the actual shortening rate may lie between similar to 2.2 mm yr(-1) and zero because deformation of the terraces and the valley fill cannot be unequivocally demonstrated. Our estimate is consistent with the bulk shortening rate of similar to 5 - 10 mm yr(-1) across several faults in NE Tibet derived from neotectonic and GPS data, although in case of the Shiyou River, Holocene deformation is barely discernible owing to intense climate-induced river incision.}, language = {en} } @article{SaviSchildgenTofeldeetal.2016, author = {Savi, Sara and Schildgen, Taylor F. and Tofelde, Stefanie and Wittmann, Hella and Scherler, Dirk and Mey, J{\"u}rgen and Alonso, Ricardo N. and Strecker, Manfred}, title = {Climatic controls on debris-flow activity and sediment aggradation: The Del Medio fan, NW Argentina}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF003912}, pages = {2424 -- 2445}, year = {2016}, abstract = {In the Central Andes, several studies on alluvial terraces and valley fills have linked sediment aggradation to periods of enhanced sediment supply. However, debate continues over whether tectonic or climatic factors are most important in triggering the enhanced supply. The Del Medio catchment in the Humahuaca Basin (Eastern Cordillera, NW Argentina) is located within a transition zone between subhumid and arid climates and hosts the only active debris-flow fan within this intermontane valley. By combining Be-10 analyses of boulder and sediment samples within the Del Medio catchment, with regional morphometric measurements of nearby catchments, we identify the surface processes responsible for aggradation in the Del Medio fan and their likely triggers. We find that the fan surface has been shaped by debris flows and channel avulsions during the last 400 years. Among potential tectonic, climatic, and autogenic factors that might influence deposition, our analyses point to a combination of several favorable factors that drive aggradation. These are in particular the impact of occasional abundant rainfall on steep slopes in rock types prone to failure, located in a region characterized by relatively low rainfall amounts and limited transport capacity. These characteristics are primarily associated with the climatic transition zone between the humid foreland and the arid orogen interior, which creates an imbalance between sediment supply and sediment transfer. The conditions and processes that drive aggradation in the Del Medio catchment today may provide a modern analog for the conditions and processes that drove aggradation in other nearby tributaries in the past.}, language = {en} } @article{ThiedeBookhagenArrowsmithetal.2004, author = {Thiede, Rasmus Christoph and Bookhagen, Bodo and Arrowsmith, J. Ram{\´o}n and Sobel, Edward and Strecker, Manfred}, title = {Climatic control on rapid exhumation along the Southern Himalayan Front}, issn = {0012-821X}, year = {2004}, abstract = {Along the Southern Himalayan Front (SHF), areas with concentrated precipitation coincide with rapid exhumation, as indicated by young mineral cooling ages. Twenty new, young ( < 1-5 Ma) apatite fission track (AFT) ages have been obtained from the Himalayan Crystalline Core along the Sutlej Valley, NW India. The AFT ages correlate with elevation, but show no spatial relationship to tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Monsoonal precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the SHF is focused on high mountainous areas, where the orographic barrier forces out > 80\% of the annual precipitation. AFT cooling ages reveal a coincidence between rapid erosion and exhumation that is focused in a similar to 50-70-km-wide sector of the Himalaya, rather than encompassing the entire orogen. Assuming simplified constant exhumation rates, the rocks of two age vs. elevation transects were exhumed at similar to 1.4 +/- 0.2 and similar to 1.1 +/- 0.4 mm/a with an average cooling rate of similar to 40-50degreesC/Ma during Pliocene-Quarternary time. Following other recently published hypotheses regarding the relation between tectonics and climate in the Himalaya, we suggest that this concentrated loss of material was accommodated by motion along a back-stepping thrust to the south and a normal fault zone to the north as part of an extruding wedge. Climatically controlled erosional processes focus on this wedge and suggest that climatically controlled surface processes determine tectonic deformation in the internal part of the Himalaya. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{DeyThiedeSchildgenetal.2016, author = {Dey, Saptarshi and Thiede, Rasmus Christoph and Schildgen, Taylor F. and Wittmann, Hella and Bookhagen, Bodo and Scherler, Dirk and Jain, Vikrant and Strecker, Manfred}, title = {Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India}, series = {Earth \& planetary science letters}, volume = {449}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.05.050}, pages = {321 -- 331}, year = {2016}, abstract = {Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 10(3) to 10(5) yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic Be-10 indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 +/- 3.2 ka and 43.0 +/- 2.7 ka (1 sigma). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 +/- 1.2 ka and 15.3 +/- 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 +/- 0.4 ka (T3), 7.1 +/- 0.4 ka (T4), 5.2 +/- 0.4 ka (T5) and 3.6 +/- 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{MarwanTrauthSchwarzetal.1999, author = {Marwan, Norbert and Trauth, Martin H. and Schwarz, Udo and Kurths, J{\"u}rgen and Strecker, Manfred}, title = {Climate dynamics of varved pleistocene lake sediments in nw Argentina}, issn = {1029-7006}, year = {1999}, language = {en} } @article{TrauthAlonsoHaseltonetal.2000, author = {Trauth, Martin H. and Alonso, Ricardo N. and Haselton, Kirk R. and Hermanns, Reginald L. and Strecker, Manfred}, title = {Climate change and mass movements in the NW Argentine Andes}, year = {2000}, language = {en} }