@article{DaempflingMielkeKoellneretal.2022, author = {D{\"a}mpfling, Helge L. C. and Mielke, Christian and Koellner, Nicole and Lorenz, Melanie and Rogass, Christian and Altenberger, Uwe and Harlov, Daniel E. and Knoper, Michael}, title = {Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)}, series = {European journal of mineralogy}, volume = {34}, journal = {European journal of mineralogy}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {0935-1221}, doi = {10.5194/ejm-34-275-2022}, pages = {275 -- 284}, year = {2022}, abstract = {In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM). This is accomplished by using a hyperspectral camera system that operates in the visible and near-infrared (VNIR) range with a specifically designed sample holder, scanning setup, and a microscope lens. We utilize this method on a monazite ore thin section from Steenkampskraal (South Africa), which we analyzed for the rare earth element (REE)-bearing mineral monazite ((Ce,Nd,La)PO4), with high concentrations of Nd. The transmittance analyses with the hyperspectral VNIR camera can be used to identify REE minerals and Nd in thin sections. We propose a three-point band depth index, the Nd feature depth index (NdFD), and its related product the Nd band depth index (NdBDI), which enables automatic mineral detection and classification for the Nd-bearing monazites in thin sections. In combination with the average concentration of the relative Nd content, it permits a destruction-free, total concentration calculation for Nd across the entire thin section.}, language = {en} } @article{StojkoskiSandevKocarevetal.2022, author = {Stojkoski, Viktor and Sandev, Trifce and Kocarev, Ljupco and Pal, Arnab}, title = {Autocorrelation functions and ergodicity in diffusion with stochastic resetting}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac4ce9}, pages = {22}, year = {2022}, abstract = {Diffusion with stochastic resetting is a paradigm of resetting processes. Standard renewal or master equation approach are typically used to study steady state and other transport properties such as average, mean squared displacement etc. What remains less explored is the two time point correlation functions whose evaluation is often daunting since it requires the implementation of the exact time dependent probability density functions of the resetting processes which are unknown for most of the problems. We adopt a different approach that allows us to write a stochastic solution for a single trajectory undergoing resetting. Moments and the autocorrelation functions between any two times along the trajectory can then be computed directly using the laws of total expectation. Estimation of autocorrelation functions turns out to be pivotal for investigating the ergodic properties of various observables for this canonical model. In particular, we investigate two observables (i) sample mean which is widely used in economics and (ii) time-averaged-mean-squared-displacement (TAMSD) which is of acute interest in physics. We find that both diffusion and drift-diffusion processes with resetting are ergodic at the mean level unlike their reset-free counterparts. In contrast, resetting renders ergodicity breaking in the TAMSD while both the stochastic processes are ergodic when resetting is absent. We quantify these behaviors with detailed analytical study and corroborate with extensive numerical simulations. Our results can be verified in experimental set-ups that can track single particle trajectories and thus have strong implications in understanding the physics of resetting.}, language = {en} } @article{PuppeLeueSommeretal.2022, author = {Puppe, Daniel and Leue, Martin and Sommer, Michael and Schaller, J{\"o}rg and Kaczorek, Danuta}, title = {Auto-fluorescence in phytoliths}, series = {Frontiers in Environmental Science}, volume = {10}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2022.915947}, pages = {14}, year = {2022}, abstract = {The detection of auto-fluorescence in phytogenic, hydrated amorphous silica depositions (phytoliths) has been found to be a promising approach to verify if phytoliths were burnt or not, especially in archaeological contexts. However, it is unknown so far at what temperature and how auto-fluorescence is induced in phytoliths. We used fluorescence microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy to analyze auto-fluorescence in modern phytoliths extracted from plant samples or in intact leaves of winter wheat. Leaves and extracted phytoliths were heated at different temperatures up to 600 degrees C. The aims of our experiments were i) to find out what temperature is needed to induce auto-fluorescence in phytoliths, ii) to detect temperature-dependent changes in the molecular structure of phytoliths related to auto-fluorescence, and iii) to derive a mechanistic understanding of auto-fluorescence in phytoliths. We found organic compounds associated with phytoliths to cause auto-fluorescence in phytoliths treated at temperatures below approx. 400 degrees C. In phytoliths treated at higher temperatures, i.e., 450 and 600 degrees C, phytolith auto-fluorescence was mainly caused by molecular changes of phytolith silica. Based on our results we propose that auto-fluorescence in phytoliths is caused by clusterization-triggered emissions, which are caused by overlapping electron clouds forming non-conventional chromophores. In phytoliths heated at temperatures above about 400 degrees C dihydroxylation and the formation of siloxanes result in oxygen clusters that serve as non-conventional chromophores in fluorescence events. Furthermore, SEM-EDX analyses revealed that extractable phytoliths were dominated by lumen phytoliths (62\%) compared to cell wall phytoliths (38\%). Our findings might be not only relevant in archaeological phytolith-based examinations, but also for studies on the temperature-dependent release of silicon from phytoliths and the potential of long-term carbon sequestration in phytoliths.}, language = {en} } @article{JohanssonLeitnerBidermaneetal.2022, author = {Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Born, Artur and F{\"o}hlisch, Alexander and Svensson, Svante and M{\aa}rtensson, Nils and Lindblad, Andreas}, title = {Auger- and photoelectron coincidences of molecular O2 adsorbed on Ag(111)}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0368-2048}, doi = {10.1016/j.elspec.2022.147174}, pages = {6}, year = {2022}, abstract = {The oxygen on Ag(111) system has been investigated with Auger electron-photoelectron coincidence spectroscopy (APECS). The coincidence spectra between O 1s core level photoelectrons and O KLL Auger electrons have been studied together with Ag(3)d/AgM4,5NN coincidences. We also describe the electron-electron coincidence spectrometer setup, CoESCA, consisting of two angle resolved time-of-flight spectrometers at a synchrotron light source. Contributions from molecular oxygen and chemisorbed oxygen are assigned using the coincidence data, conclusions are drawn primarily from the O 1s/O KLL data. The data acquisition and treatment procedure are also outlined. The chemisorbed oxygen species observed are relevant for the catalytic ethylene oxidation.}, language = {en} } @article{GerlachPreitschopfKaraevetal.2022, author = {Gerlach, Marius and Preitschopf, Tobias and Karaev, Emil and Quitian-Lara, Heidy Mayerly and Mayer, Dennis and Bozek, John and Fischer, Ingo and Fink, Reinhold F.}, title = {Auger electron spectroscopy of fulminic acid, HCNO}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {25}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02104h}, pages = {15217 -- 15229}, year = {2022}, abstract = {HCNO is a molecule of considerable astrochemical interest as a precursor to prebiotic molecules. It is synthesized by preparative pyrolysis and is unstable at room temperature. Here, we investigate its spectroscopy in the soft X-ray regime at the C 1s, N 1s and O 1s edges. All 1s ionization energies are reported and X-ray absorption spectra reveal the transitions from the 1s to the pi* state. Resonant and normal Auger electron spectra for the decay of the core hole states are recorded in a hemispherical analyzer. An assignment of the experimental spectra is provided with the aid of theoretical counterparts. The latter are using a valence configuration interaction representation of the intermediate and final state energies and wavefunctions, the one-center approximation for transition rates and band shapes according to the moment theory. The computed spectra are in very good agreement with the experimental data and most of the relevant bands are assigned. Additionally, we present a simple approach to estimate relative Auger transition rates on the basis of a minimal basis representation of the molecular orbitals. We demonstrate that this provides a qualitatively good and reliable estimate for several signals in the normal and resonant Auger electron spectra which have significantly different intensities in the decay of the three core holes.}, language = {en} } @article{PadashSandevKantzetal.2022, author = {Padash, Amin and Sandev, Trifce and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei}, title = {Asymmetric Levy flights are more efficient in random search}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6050260}, pages = {23}, year = {2022}, abstract = {We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity.}, language = {en} } @article{HerbstBaalmannBykovetal.2022, author = {Herbst, Konstantin and Baalmann, Lennart R. and Bykov, Andrei and Engelbrecht, N. Eugene and Ferreira, Stefan E. S. and Izmodenov, Vladislav V. and Korolkov, Sergey D. and Levenfish, Ksenia P. and Linsky, Jeffrey L. and Meyer, Dominique M. -A. and Scherer, Klaus and Strauss, R. Du Toit}, title = {Astrospheres of planet-hosting cool stars and beyond when modeling meets observations}, series = {Space science reviews}, volume = {218}, journal = {Space science reviews}, number = {4}, publisher = {Springer Nature}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-022-00894-3}, pages = {46}, year = {2022}, abstract = {Thanks to dedicated long-term missions like Voyager and GOES over the past 50 years, much insight has been gained on the activity of our Sun, the solar wind, its interaction with the interstellar medium, and, thus, about the formation, the evolution, and the structure of the heliosphere. Additionally, with the help of multi-wavelength observations by the Hubble Space Telescope, Kepler, and TESS, we not only were able to detect a variety of extrasolar planets and exomoons but also to study the characteristics of their host stars, and thus became aware that other stars drive bow shocks and astrospheres. Although features like, e.g., stellar winds, could not be measured directly, over the past years several techniques have been developed allowing us to indirectly derive properties like stellar mass-loss rates and stellar wind speeds, information that can be used as direct input to existing astrospheric modeling codes. In this review, the astrospheric modeling efforts of various stars will be presented. Starting with the heliosphere as a benchmark of astrospheric studies, investigating the paleo-heliospheric changes and the Balmer H alpha projections to 1 pc, we investigate the surroundings of cool and hot stars, but also of more exotic objects like neutron stars. While pulsar wind nebulae (PWNs) might be a source of high-energy galactic cosmic rays (GCRs), the astrospheric environments of cool and hot stars form a natural shield against GCRs. Their modulation within these astrospheres, and the possible impact of turbulence, are also addressed. This review shows that all of the presented modeling efforts are in excellent agreement with currently available observations.}, language = {en} } @article{GriggioBedinRaddietal.2022, author = {Griggio, Massimo and Bedin, Luigi R. and Raddi, Roberto and Reindl, Nicole and Tomasella, Lina and Scalco, M. and Salaris, M. and Cassisi, S. and Ochner, P. and Ciroi, S. and Rosati, P. and Nardiello, Domenico and Anderson, J. and Libralato, Mattia and Bellini, A. and Vallenari, A. and Spina, L. and Pedani, M.}, title = {Astro-photometric study of M37 with Gaia and wide-field ugi-imaging}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1920}, pages = {1841 -- 1853}, year = {2022}, abstract = {We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material.}, language = {en} } @article{WachsBilzWettsteinetal.2022, author = {Wachs, Sebastian and Bilz, Ludwig and Wettstein, Alexander and Wright, Michelle F. and Kansok-Dusche, Julia and Krause, Norman and Ballaschk, Cindy}, title = {Associations between witnessing and perpetrating online hate speech among adolescents}, series = {Psychology of violence}, volume = {12}, journal = {Psychology of violence}, number = {6}, publisher = {American Psychological Association}, address = {Washington}, issn = {2152-0828}, doi = {10.1037/vio0000422}, pages = {371 -- 381}, year = {2022}, abstract = {Objective: The open expression of hatred, hostility, and violence against minorities has become a common online phenomenon. Adolescents are at particular risk of being involved in different hate speech roles (e.g., witness, perpetrator). However, the correlates of their involvement as perpetrators and the mechanisms that might explain their involvement in hate speech across different roles have not yet been thoroughly investigated. To this end, this study investigates moral disengagement and empathy as correlates of online hate speech perpetration and the moderation effects of empathy and moral disengagement in the relationship between witnessing and perpetrating online hate speech. Method: The sample consists of 3,560 7th to 9th graders from 40 schools in Germany and Switzerland. Self-report questionnaires were utilized to assess online hate speech involvement, moral disengagement, and empathy. Results: Multilevel regression analyses revealed that moral disengagement and witnessing online hate speech were positively associated with online hate speech perpetration, while empathy was negatively associated with it. The findings also showed that the positive relationship between witnessing and perpetrating online hate speech was stronger at higher levels of moral disengagement and weaker when moral disengagement was low. The association between witnessing and perpetrating online hate speech was weaker when adolescents had higher rather than lower levels of empathy. Conclusions: The findings underscore the need for prevention efforts to accelerate moral engagement and empathy as critical future directions in hate speech prevention. This study also contributes to our understanding of underlying mechanisms that explain adolescents' involvement across different roles in hate speech.}, language = {en} } @article{WickKriemlerGranacher2022, author = {Wick, Kristin and Kriemler, Susi and Granacher, Urs}, title = {Associations between measures of physical fitness and cognitive performance in preschool children}, series = {BMC sports science, medicine \& rehabilitation}, volume = {14}, journal = {BMC sports science, medicine \& rehabilitation}, number = {1}, publisher = {BMC}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-022-00470-w}, pages = {8}, year = {2022}, abstract = {Background: Given that recent studies report negative secular declines in physical fitness, associations between fitness and cognition in childhood are strongly discussed. The preschool age is characterized by high neuroplasticity which effects motor skill learning, physical fitness, and cognitive development. The aim of this study was to assess the relation of physical fitness and attention (including its individual dimensions (quantitative, qualitative)) as one domain of cognitive performance in preschool children. We hypothesized that fitness components which need precise coordination compared to simple fitness components are stronger related to attention. Methods: Physical fitness components like static balance (i.e., single-leg stance), muscle strength (i.e., handgrip strength), muscle power (i.e., standing long jump), and coordination (i.e., hopping on one leg) were assessed in 61 healthy children (mean age 4.5 +/- 0.6 years; girls n = 30). Attention was measured with the "Konzentrations-Handlungsverfahren fur Vorschulkinder" [concentration-action procedure for preschoolers]). Analyses were adjusted for age, body height, and body mass. Results: Results from single linear regression analysis revealed a significant (p < 0.05) association between physical fitness (composite score) and attention (composite score) (standardized ss = 0.40), showing a small to medium effect (F-2 = 0.14). Further, coordination had a significant relation with the composite score and the quantitative dimension of attention (standardized ss = 0.35; p < 0.01; standardized ss = - 0.33; p < 0.05). Coordination explained about 11\% (composite score) and 9\% (quantitative dimension) of the variance in the stepwise multiple regression model. Conclusion: The results indicate that performance in physical fitness, particularly coordination, is related to attention in preschool children. Thus, high performance in complex fitness components (i.e., hopping on one leg) tends to predict attention in preschool children. Further longitudinal studies should focus on the effectiveness of physical activity programs implementing coordination and complex exercises at preschool age to examine cause-effect relationships between physical fitness and attention precisely.}, language = {en} }