@article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{AbrahamKraheDominicetal.2002, author = {Abraham, Charles and Krah{\´e}, Barbara and Dominic, Robert and Fritsche, Immo}, title = {Do health promotion messages target cognitive and behavioural correlates of condom use? : a content analysis of safer sex promotion leaflets in two countries}, issn = {1359-107X}, year = {2002}, language = {en} } @article{AbujatumAroldKnispeletal.2007, author = {Abujatum, Millaray and Arold, Helga and Knispel, Katharina and Rudolf, Susanne and Schaarschmidt, Uwe}, title = {Intervention durch Training und Beratung}, isbn = {978-3-407-25465-8}, year = {2007}, language = {de} } @article{AdamBovend'EerdtvanDoorenetal.2012, author = {Adam, Jos J. and Bovend'Eerdt, Thamar J. H. and van Dooren, Fleur E. P. and Fischer, Martin H. and Pratt, Jay}, title = {The closer the better hand proximity dynamically affects letter recognition accuracy}, series = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, volume = {74}, journal = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1943-3921}, doi = {10.3758/s13414-012-0339-3}, pages = {1533 -- 1538}, year = {2012}, abstract = {A growing literature has suggested that processing of visual information presented near the hands is facilitated. In this study, we investigated whether the near-hands superiority effect also occurs with the hands moving. In two experiments, participants performed a cyclical bimanual movement task requiring concurrent visual identification of briefly presented letters. For both the static and dynamic hand conditions, the results showed improved letter recognition performance with the hands closer to the stimuli. The finding that the encoding advantage for near-hand stimuli also occurred with the hands moving suggests that the effect is regulated in real time, in accordance with the concept of a bimodal neural system that dynamically updates hand position in external space.}, language = {en} } @article{AdamElsner2020, author = {Adam, Maurits and Elsner, Birgit}, title = {The impact of salient action effects on 6-, 7-, and 11-month-olds' goal-predictive gaze shifts for a human grasping action}, series = {PLOS ONE}, volume = {15}, journal = {PLOS ONE}, number = {10}, publisher = {Public Library of Science}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0240165}, pages = {18}, year = {2020}, abstract = {When infants observe a human grasping action, experience-based accounts predict that all infants familiar with grasping actions should be able to predict the goal regardless of additional agency cues such as an action effect. Cue-based accounts, however, suggest that infants use agency cues to identify and predict action goals when the action or the agent is not familiar. From these accounts, we hypothesized that younger infants would need additional agency cues such as a salient action effect to predict the goal of a human grasping action, whereas older infants should be able to predict the goal regardless of agency cues. In three experiments, we presented 6-, 7-, and 11-month-olds with videos of a manual grasping action presented either with or without an additional salient action effect (Exp. 1 and 2), or we presented 7-month-olds with videos of a mechanical claw performing a grasping action presented with a salient action effect (Exp. 3). The 6-month-olds showed tracking gaze behavior, and the 11-month-olds showed predictive gaze behavior, regardless of the action effect. However, the 7-month-olds showed predictive gaze behavior in the action-effect condition, but tracking gaze behavior in the no-action-effect condition and in the action-effect condition with a mechanical claw. The results therefore support the idea that salient action effects are especially important for infants' goal predictions from 7 months on, and that this facilitating influence of action effects is selective for the observation of human hands.}, language = {en} } @article{AdamElsner2018, author = {Adam, Maurits and Elsner, Birgit}, title = {Action effects foster 11-month-olds' prediction of action goals for a non-human agent}, series = {Infant behavior \& development : an international and interdisciplinary journal}, volume = {53}, journal = {Infant behavior \& development : an international and interdisciplinary journal}, publisher = {Elsevier}, address = {New York}, issn = {0163-6383}, doi = {10.1016/j.infbeh.2018.09.002}, pages = {49 -- 55}, year = {2018}, abstract = {Action effects have been stated to be important for infants' processing of goal-directed actions. In this study, 11-month-olds showed equally fast predictive gaze shifts to a claw's action goal when the grasping action was presented either with three agency cues (self-propelled movement, equifinality of goal achievement and a salient action effect) or with only a salient action effect, but infants showed tracking gaze when the claw showed only self-propelled movement and equifinality of goal achievement. The results suggest that action effects, compared to purely kinematic cues, seem to be especially important for infants' online processing of goal-directed actions.}, language = {en} } @article{AdamGumbschButzetal.2021, author = {Adam, Maurits and Gumbsch, Christian and Butz, Martin V. and Elsner, Birgit}, title = {The impact of action effects on infants' predictive gaze shifts for a non-human grasping action at 7, 11, and 18 months}, series = {Frontiers in psychology}, volume = {12}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.695550}, pages = {10}, year = {2021}, abstract = {During the observation of goal-directed actions, infants usually predict the goal at an earlier age when the agent is familiar (e.g., human hand) compared to unfamiliar (e.g., mechanical claw). These findings implicate a crucial role of the developing agentive self for infants' processing of others' action goals. Recent theoretical accounts suggest that predictive gaze behavior relies on an interplay between infants' agentive experience (top-down processes) and perceptual information about the agent and the action-event (bottom-up information; e.g., agency cues). The present study examined 7-, 11-, and 18-month-old infants' predictive gaze behavior for a grasping action performed by an unfamiliar tool, depending on infants' age-related action knowledge about tool-use and the display of the agency cue of producing a salient action effect. The results are in line with the notion of a systematic interplay between experience-based top-down processes and cue-based bottom-up information: Regardless of the salient action effect, predictive gaze shifts did not occur in the 7-month-olds (least experienced age group), but did occur in the 18-month-olds (most experienced age group). In the 11-month-olds, however, predictive gaze shifts occurred only when a salient action effect was presented. This sheds new light on how the developing agentive self, in interplay with available agency cues, supports infants' action-goal prediction also for observed tool-use actions.}, language = {en} } @article{AdamReitenbachElsner2017, author = {Adam, Maurits and Reitenbach, Ivanina and Elsner, Birgit}, title = {Agency cues and 11-month-olds' and adults' anticipation of action goals}, series = {Cognitive Development}, volume = {43}, journal = {Cognitive Development}, publisher = {Elsevier}, address = {New York}, issn = {0885-2014}, doi = {10.1016/j.cogdev.2017.02.008}, pages = {37 -- 48}, year = {2017}, abstract = {For the processing of goal-directed actions, some accounts emphasize the importance of experience with the action or the agent. Other accounts stress the importance of agency cues. We investigated the impact of agency cues on 11-month-olds' and adults' goal anticipation for a grasping-action performed by a mechanical claw. With an eyetracker, we measured anticipations in two conditions, where the claw was displayed either with or without agency cues. In two experiments, 11-month-olds were predictive when agency cues were present, but reactive when no agency cues were presented. Adults were predictive in both conditions. Furthermore, 11-month-olds rapidly learned to predict the goal in the agency condition, but not in the mechanical condition. Adults' predictions did not change across trials in the agency condition, but decelerated in the mechanical condition. Thus, agency cues and own action experience are important for infants' and adults' online processing of goal-directed actions by non-human agents.}, language = {en} } @article{AdamReitenbachPapenmeieretal.2016, author = {Adam, Maurits and Reitenbach, Ivanina and Papenmeier, Frank and Gredeb{\"a}ck, Gustaf and Elsner, Claudia and Elsner, Birgit}, title = {actions, but not for mechanical claws}, series = {Meteoritics \& planetary science : journal of the Meteoritical Society}, volume = {44}, journal = {Meteoritics \& planetary science : journal of the Meteoritical Society}, publisher = {Elsevier}, address = {New York}, issn = {0163-6383}, doi = {10.1016/j.infbeh.2016.05.001}, pages = {29 -- 37}, year = {2016}, abstract = {Previous research indicates that infants' prediction of the goals of observed actions is influenced by own experience with the type of agent performing the action (i.e., human hand vs. non-human agent) as well as by action-relevant features of goal objects (e.g., object size). The present study investigated the combined effects of these factors on 12-month-olds' action prediction. Infants' (N = 49) goal-directed gaze shifts were recorded as they observed 14 trials in which either a human hand or a mechanical claw reached for a small goal area (low-saliency goal) or a large goal area (high-saliency goal). Only infants who had observed the human hand reaching for a high-saliency goal fixated the goal object ahead of time, and they rapidly learned to predict the action goal across trials. By contrast, infants in all other conditions did not track the observed action in a predictive manner, and their gaze shifts to the action goal did not change systematically across trials. Thus, high-saliency goals seem to boost infants' predictive gaze shifts during the observation of human manual actions, but not of actions performed by a mechanical device. This supports the assumption that infants' action predictions are based on interactive effects of action-relevant object features (e.g., size) and own action experience.}, language = {en} } @article{AdamoBaumeisterHohmannetal.2015, author = {Adamo, Nicoletta and Baumeister, Sarah and Hohmann, Sarah and Wolf, Isabella and Holz, Nathalie and Boecker-Schlier, Regina and Laucht, Manfred and Banaschewski, Tobias and Brandeis, Daniel}, title = {Frequency-specific coupling between trial-to-trial fluctuations of neural responses and response-time variability}, series = {Journal of neural transmission}, volume = {122}, journal = {Journal of neural transmission}, number = {8}, publisher = {Springer}, address = {Wien}, issn = {0300-9564}, doi = {10.1007/s00702-015-1382-8}, pages = {1197 -- 1202}, year = {2015}, abstract = {We assessed intra-individual variability of response times (RT) and single-trial P3 amplitudes following targets in healthy adults during a Flanker/NO-GO task. RT variability and variability of the neural responses coupled at the faster frequencies examined (0.07-0.17 Hz) at Pz, the target-P3 maxima, despite non-significant associations for overall variability (standard deviation, SD). Frequency-specific patterns of variability in the single-trial P3 may help to understand the neurophysiology of RT variability and its explanatory models of attention allocation deficits beyond intra-individual variability summary indices such as SD.}, language = {en} }